Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19.
CAS
PubMed
CrossRef
Google Scholar
Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152:14–27.
CrossRef
PubMed
Google Scholar
Lagerburg V, Bakkers M, Bouwhuis A, Hoeijmakers JGJ, Smit AM, Van Den Berg SJM, et al. Contact heat evoked potentials: normal values and use in small-fiber neuropathy. Muscle Nerve. 2015;51:743–9.
PubMed
CrossRef
Google Scholar
Madsen CS, Finnerup NB, Baumgärtner U. Assessment of small fibers using evoked potentials. Scand J Pain. 2014;5:111–8.
PubMed
CrossRef
Google Scholar
Truini A, Haanpaa M, Zucchi R, Galeotti F, Iannetti GD, Romaniello A, et al. Laser-evoked potentials in post-herpetic neuralgia. Clin Neurophysiol. 2003;114:702–9.
CAS
PubMed
CrossRef
Google Scholar
Cruccu G, Leandri M, Iannetti GD, Mascia A, Romaniello A, Truini A, et al. Small-fiber dysfunction in trigeminal neuralgia: carbamazepine effect on laser-evoked potentials. Neurology. 2001;56:1722–6.
CAS
PubMed
CrossRef
Google Scholar
Truini A, Galeotti F, Pennisi E, Casa F, Biasiotta A, Cruccu G. Trigeminal small-fibre function assessed with contact heat evoked potentials in humans. Pain. 2007;132:102–7.
CAS
PubMed
CrossRef
Google Scholar
Chao CC, Tseng MT, Lin YJ, Yang WS, Hsieh SC, Lin YH, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care. 2010;33:2654–9.
PubMed
PubMed Central
CrossRef
Google Scholar
Mueller D, Obermann M, Koeppen S, Kavuk I, Yoon MS, Sack F, et al. Electrically evoked nociceptive potentials for early detection of diabetic small-fiber neuropathy. Eur J Neurol. 2010;17:834–41.
CAS
PubMed
CrossRef
Google Scholar
Chao CC, Hsieh SC, Tseng MT, Chang YC, Hsieh ST. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol. 2008;119:653–61.
CrossRef
PubMed
Google Scholar
Pazzaglia C, Valeriani M. Brain-evoked potentials as a tool for diagnosing neuropathic pain. Expert Rev Neurother. 2009;9:759–71.
PubMed
CrossRef
Google Scholar
Wong MC, Chung JWY. Feasibility of contact heat evoked potentials for detection of diabetic neuropathy. Muscle Nerve. 2011;44:902–6.
PubMed
CrossRef
Google Scholar
Pluijms WA, Slangen R, Joosten EA, Kessels AG, Merkies IS, Schaper NC, et al. Electrical spinal cord stimulation in painful diabetic polyneuropathy, a systematic review on treatment efficacy and safety. Eur J Pain. 2011;15:783–8.
PubMed
CrossRef
Google Scholar
Atherton DD, Facer P, Roberts KM, Misra VP, Chizh BA, Bountra C, et al. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 2007;7:21.
PubMed
PubMed Central
CrossRef
Google Scholar
Kodaira M, Inui K, Kakigi R. Evaluation of nociceptive Aδ- and C-fiber dysfunction with lidocaine using intraepidermal electrical stimulation. Clin Neurophysiol. 2014;125:1870–7.
PubMed
CrossRef
Google Scholar
Treede RD, Apkarian AV, Bromm B, Greenspan JD, Lenz FA. Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain. 2000;87:113–9.
CAS
PubMed
CrossRef
Google Scholar
Brennum J, Jensen TS. Relationship between vertex potentials and magnitude of pre-pain and pain sensations evoked by electrical skin stimuli. Electroencephalogr Clin Neurophysiol. 1992;82:387–90.
CAS
PubMed
CrossRef
Google Scholar
Boor R, Li L, Goebel B, Reitter B. Subcortical somatosensory evoked potentials after posterior tibial nerve stimulation in children. Brain Dev. 2008;30:493–8.
PubMed
CrossRef
Google Scholar
Prestor B, Gnidovec B, Golob P. Long sensory tracts (cuneate fascicle) in cervical somatosensory evoked potential after median nerve stimulation. Electroencephalogr Clin Neurophysiol. 1997;104:470–9.
CAS
PubMed
CrossRef
Google Scholar
Restuccia D, Valeriani M, Di Lazzaro V, Tonali P, Mauguiere F. Somatosensory evoked potentials after multisegmental upper limb stimulation in diagnosis of cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry. 1994;57:301–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Restuccia D, Insola A, Valeriani M, Santilli V, Bedini L, Le Pera D, et al. Somatosensory evoked potentials after multisegmental lower limb stimulation in focal lesions of the lumbosacral spinal cord. J Neurol Neurosurg Psychiatry. 2000;69:91–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yamada T, Machida M, Kimura J. Far-field somatosensory evoked potentials after stimulation of the tibial nerve. Neurology. 1982;32:1151–8.
CAS
PubMed
CrossRef
Google Scholar
Naguszewski WK, Naguszewski RK, Gose EE. Dermatomal somatosensory evoked potential demonstration of nerve root decompression after VAX-D therapy. Neurol Res. 2001;23:706–14.
CAS
PubMed
CrossRef
Google Scholar
Nakamura R, Noritake M, Hosoda Y, Kamakura K, Nagata N, Shibasaki H. Somatosensory conduction delay in central and peripheral nervous system of diabetic patients. Diabetes Care. 1992;15:532–5.
CAS
PubMed
CrossRef
Google Scholar
Soininen K, Järvilehto T. Somatosensory evoked potentials associated with tactile stimulation at detection threshold in man. Electroencephalogr Clin Neurophysiol. 1983;56:494–500.
CAS
PubMed
CrossRef
Google Scholar
Kakigi R, Shibasaki H, Neshige R, Ikeda A, Mamiya K, Kuroda Y. Pain-related somatosensory evoked potentials in cortical reflex myoclonus. J Neurol Neurosurg Psychiatry. 1990;53:44–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yamauchi N, Fujitani Y, Oikawa T. Somatosensory evoked potentials elicited by mechanical and electrical stimulation of each single pain or tactile spot of the skin. Tohoku J Exp Med. 1981;133:81–92.
CAS
PubMed
CrossRef
Google Scholar
Inui K, Tran TD, Hoshiyama M, Kakigi R. Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain. 2002;96:247–52.
PubMed
CrossRef
Google Scholar
Treede RD, Lorenz J, Baumgärtner U. Clinical usefulness of laser-evoked potentials. Neurophysiol Clin. 2003;33:303–14.
PubMed
CrossRef
Google Scholar
Katsarava Z, Ayzenberg I, Sack F, Limmroth V, Diener HC, Kaube H. A novel method of eliciting pain-related potentials by transcutaneous electrical stimulation. Headache. 2006;46:1511–7.
PubMed
CrossRef
Google Scholar
Bromm B, Jahnke MT, Treede RD. Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res. 1984;55:158–66.
CAS
PubMed
CrossRef
Google Scholar
Bromm B, Lorenz J. Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol. 1998;107:227–53.
CAS
PubMed
CrossRef
Google Scholar
Chen AC, Niddam DM, Arendt-Nielsen L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci Lett. 2001;316:79–82.
CAS
PubMed
CrossRef
Google Scholar
Treede RD. Neurophysiological studies of pain pathways in peripheral and central nervous system disorders. J Neurol. 2003;250:1152–61.
PubMed
CrossRef
Google Scholar
Valeriani M, Le Pera D, Niddam D, Chen AC, Arendt-Nielsen L. Dipolar modelling of the scalp evoked potentials to painful contact heat stimulation of the human skin. Neurosci Lett. 2002;318:44–8.
CAS
PubMed
CrossRef
Google Scholar
Casanova-Molla J, Grau-Junyent JM, Morales M, Valls-Solé J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain. 2011;152:410–8.
PubMed
CrossRef
Google Scholar
Garcia-Larrea L. Objective pain diagnostics: clinical neurophysiology. Neurophysiol Clin. 2012;42:187–97.
CAS
PubMed
CrossRef
Google Scholar
Passmore SR, Murphy B, Lee TD. The origin and application of somatosensory evoked potentials as a neurophysiological technique to investigate neuroplasticity. J Can Chiropr Assoc. 2014;58:170–83.
PubMed
PubMed Central
Google Scholar
Parhizgar SE, Ekhtiari H. A review on experimental assessments of pain threshold in healthy human subjects. Basic Clin Neurosci. 2010;1:62–7.
Google Scholar
Hansen N, Kahn AK, Zeller D, Katsarava Z, Sommer C, Üçeyler N. Amplitudes of pain-related evoked potentials are useful to detect small fiber involvement in painful mixed fiber neuropathies in addition to quantitative sensory testing – an electrophysiological study. Front Neurol. 2015;6:244.
PubMed
PubMed Central
CrossRef
Google Scholar
Üçeyler N, Kahn AK, Kramer D, Zeller D, Casanova-Molla J, Wanner C, et al. Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study. BMC Neurol. 2013;13:47.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hansen N, Obermann M, Üçeyler N, Zeller D, Mueller D, Yoon MS, et al. [Clinical application of pain-related evoked potentials]. Schmerz. 2012;26:8–15.
Google Scholar
Obermann M, Katsarava Z, Esser S, Sommer C, He L, Selter L, et al. Correlation of epidermal nerve fiber density with pain-related evoked potentials in HIV neuropathy. Pain. 2008;138:79–86.
PubMed
CrossRef
Google Scholar
Chatrian GE, Canfield RC, Knauss TA, Eegt EL. Cerebral responses to electrical tooth pulp stimulation in man. An objective correlate of acute experimental pain. Neurology. 1975;25:745–57.
CAS
PubMed
CrossRef
Google Scholar
Bromm B, Meier W. The intracutaneous stimulus: a new pain model for algesimetric studies. Methods Find Exp Clin Pharmacol. 1984;6:405–10.
CAS
PubMed
Google Scholar
Chen AC, Chapman CR, Harkins SW. Brain evoked potentials are functional correlates of induced pain in man. Pain. 1979;6:365–74.
CAS
PubMed
CrossRef
Google Scholar
Fernandes de Lima VM, Chatrian GE, Lettich E, Canfield RC, Miller RC, Soso MJ. Electrical stimulation of tooth pulp in humans. I. Relationships among physical stimulus intensities, psychological magnitude estimates and cerebral evoked potentials. Pain. 1982;14:207–32.
CAS
PubMed
CrossRef
Google Scholar
Harkins SW, Chapman CR. Cerebral evoked potentials to noxious dental stimulation: relationship to subjective pain report. Psychophysiology. 1978;15:248–52.
CAS
PubMed
CrossRef
Google Scholar
Klement W, Medert HA, Arndt JO. Nalbuphine does not act analgetically in electrical painful tooth pulp stimulation in man. Pain. 1992;48:269–74.
CAS
PubMed
CrossRef
Google Scholar
Chen AC, Chapman CR. Aspirin analgesia evaluated by event-related potentials in man: possible central action in brain. Exp Brain Res. 1980;39:359–64.
CAS
PubMed
CrossRef
Google Scholar
Gehrig JD, Colpitts YH, Chapman CR. Effects of local anesthetic infiltration on brain potentials evoked by painful dental stimulation. Anesth Analg. 1981;60:779–82.
CAS
PubMed
CrossRef
Google Scholar
Rohdewald P, Granitzki HW, Neddermann E. Comparison of the analgesic efficacy of metamizole and tramadol in experimental pain. Pharmacology. 1988;37:209–17.
CAS
PubMed
CrossRef
Google Scholar
Suri A, Kaltenbach ML, Grundy BL, Derendorf H. Pharmacodynamic evaluation of codeine using tooth pulp evoked potentials. J Clin Pharmacol. 1996;36:1126–31.
CAS
PubMed
CrossRef
Google Scholar
Coda B, Tanaka A, Jacobson RC, Donaldson G, Chapman CR. Hydromorphone analgesia after intravenous bolus administration. Pain. 1997;71:41–8.
CAS
PubMed
CrossRef
Google Scholar
Hill H, Walter MH, Saeger L, Sargur M, Sizemore W, Chapman CR. Dose effects of alfentanil in human analgesia. Clin Pharmacol Ther. 1986;40:178–86.
CAS
PubMed
CrossRef
Google Scholar
Chapman CR, Hill HF, Saeger L, Gavrin J. Profiles of opioid analgesia in humans after intravenous bolus administration: alfentanil, fentanyl and morphine compared on experimental pain. Pain. 1990;43:47–55.
CAS
PubMed
CrossRef
Google Scholar
Katsarava Z, Yaldizli O, Voulkoudis C, Diener HC, Kaube H, Maschke M. Pain related potentials by electrical stimulation of skin for detection of small-fiber neuropathy in HIV. J Neurol. 2006;253:1581–4.
PubMed
CrossRef
Google Scholar
Inui K, Kakigi R. Pain perception in humans: use of intraepidermal electrical stimulation. J Neurol Neurosurg Psychiatry. 2012;83:551–6.
PubMed
CrossRef
Google Scholar
Otsuru N, Inui K, Yamashiro K, Miyazaki T, Takeshima Y, Kakigi R. Assessing Aδ fiber function with lidocaine using intraepidermal electrical stimulation. J Pain. 2010;11:621–7.
CAS
PubMed
CrossRef
Google Scholar
Obayashi K, Yamashita T, Tasaki M, Ueda M, Shono M, Jono H, et al. Amyloid neuropathy in a younger domino liver transplanted recipient. Muscle Nerve. 2011;43:449–50.
PubMed
CrossRef
Google Scholar
Kukidome D, Nishikawa T, Sato M, Igata M, Kawashima J, Shimoda S, et al. Measurement of small fibre pain threshold values for the early detection of diabetic polyneuropathy. Diabet Med. 2016;33:62–9.
CAS
PubMed
CrossRef
Google Scholar
Suzuki C, Kon T, Funamizu Y, Ueno T, Haga R, Nishijima H, et al. Elevated pain threshold in patients with asymptomatic diabetic neuropathy: an intraepidermal electrical stimulation study. Muscle Nerve. 2016;54:146–9.
PubMed
CrossRef
Google Scholar
Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res. 1976;25:103–7.
CAS
PubMed
CrossRef
Google Scholar
Plaghki L, Delisle D, Godfraind JM. Heterotopic nociceptive conditioning stimuli and mental task modulate differently the perception and physiological correlates of short CO2 laser stimuli. Pain. 1994;57:181–92.
CAS
PubMed
CrossRef
Google Scholar
Arendt-Nielsen L, Bjerring P. Sensory and pain threshold characteristics to laser stimuli. J Neurol Neurosurg Psychiatry. 1988;51:35–42.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ng Wing Tin S, Plante-Bordeneuve V, Salhi H, Goujon C, Damy T, Lefaucheur JP. Characterization of pain in familial amyloid polyneuropathy. J Pain. 2015;16:1106–14.
PubMed
CrossRef
Google Scholar
Pazzaglia C, Vollono C, Ferraro D, Virdis D, Lupi V, Le Pera D, et al. Mechanisms of neuropathic pain in patients with Charcot-Marie-Tooth 1 A: a laser-evoked potential study. Pain. 2010;149:379–85.
PubMed
CrossRef
Google Scholar
Valeriani M, Mariotti P, Le Pera D, Restuccia D, De Armas L, Maiese T, et al. Functional assessment of A delta and C fibers in patients with Fabry’s disease. Muscle Nerve. 2004;30:708–13.
PubMed
CrossRef
CAS
Google Scholar
Agostino R, Cruccu G, Romaniello A, Innocenti P, Inghilleri M. Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. Clin Neurophysiol. 2000;111:270–6.
CAS
PubMed
CrossRef
Google Scholar
Agostino R, Cruccu G, Iannetti GD, Innocenti P, Romaniello A, Truini A, et al. Trigeminal small-fibre dysfunction in patients with diabetes mellitus: a study with laser evoked potentials and corneal reflex. Clin Neurophysiol. 2000;111:2264–7.
CAS
PubMed
CrossRef
Google Scholar
Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda K, Endo C, et al. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings. Muscle Nerve. 1991;14:441–50.
CAS
PubMed
CrossRef
Google Scholar
Lorenz J, Hansen HC, Kunze K, Bromm B. Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study. J Neurol Neurosurg Psychiatry. 1996;61:107–10.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Arendt-Nielsen L, Gregersen H, Toft E, Bjerring P. Involvement of thin afferents in carpal tunnel syndrome: evaluated quantitatively by argon laser stimulation. Muscle Nerve. 1991;14:508–14.
CAS
PubMed
CrossRef
Google Scholar
Wu Q, Garcia-Larrea L, Mertens P, Beschet A, Sindou M, Mauguiere F. Hyperalgesia with reduced laser evoked potentials in neuropathic pain. Pain. 1999;80:209–14.
CAS
PubMed
CrossRef
Google Scholar
Garcia-Larrea L, Convers P, Magnin M, Andre-Obadia N, Peyron R, Laurent B, et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain. 2002;125:2766–81.
PubMed
CrossRef
Google Scholar
Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain. 1994;58:185–93.
CAS
PubMed
CrossRef
Google Scholar
Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalogr Clin Neurophysiol. 1996;100:165–8.
CAS
PubMed
CrossRef
Google Scholar
Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD, et al. Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study. Pain. 2003;105(1–2):57–64.
CAS
PubMed
CrossRef
Google Scholar
Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain. 1999;81:135–45.
CAS
PubMed
CrossRef
Google Scholar
Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127:1606–15.
PubMed
CrossRef
Google Scholar
Carpenter SE, Lynn B. Vascular and sensory responses of human skin to mild injury after topical treatment with capsaicin. Br J Pharmacol. 1981;73:755–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lynn B. Capsaicin: actions on nociceptive C-fibres and therapeutic potential. Pain. 1990;41:61–9.
CAS
PubMed
CrossRef
Google Scholar
Simone DA, Ochoa J. Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans. Pain. 1991;47:285–94.
CAS
PubMed
CrossRef
Google Scholar
Beydoun A, Dyke DBS, Morrow TJ, Casey KL. Topical capsaicin selectively attenuates heat pain and Aδ fiber-mediated laser-evoked potentials. Pain. 1996;65:189–96.
CAS
PubMed
CrossRef
Google Scholar
Rage M, Van Acker N, Facer P, Shenoy R, Knaapen MW, Timmers M, et al. The time course of CO2 laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers. Clin Neurophysiol. 2010;121:1256–66.
PubMed
CrossRef
Google Scholar
Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain. 2005;115:238–47.
PubMed
CrossRef
Google Scholar
Itskovich VV, Fei DY, Harkins SW. Psychophysiological and psychophysical responses to experimental pain induced by two types of cutaneous thermal stimuli. Int J Neurosci. 2000;105:63–75.
CAS
PubMed
CrossRef
Google Scholar
Granovsky Y, Anand P, Nakae A, Nascimento O, Smith B, Sprecher E, et al. Normative data for Aδ contact heat evoked potentials in adult population: a multicenter study. Pain. 2016;157:1156–63.
PubMed
CrossRef
Google Scholar
Le Pera D, Valeriani M, Niddam D, Chen AC, Arendt-Nielsen L. Contact heat evoked potentials to painful and non-painful stimuli: effect of attention towards stimulus properties. Brain Topogr. 2002;15:115–23.
PubMed
CrossRef
Google Scholar
Howard MA, Coen SJ, Buchanan TJ, Smart TS, Gregory SL, Huggins JP, et al. Test-retest reproducibility of cerebral and subjective responses to painful and non-painful contact-heat evoked potential stimulation (CHEPS). Eur J Pain. 2006;10:S82–S82.
CrossRef
Google Scholar