Skip to main content

Molecular Connection Between Diabetes and Dementia

  • Chapter
  • First Online:
Diabetes Mellitus

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1128))

Abstract

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are both serious global health problems with high prevalence. These two diseases have some common features, including risk factors, age-associated disease onsets, insulin resistance, impaired glucose metabolism, deregulation of O-GlcNAcylation, chronic oxidative stress, and inflammation. Some of these features, such as insulin resistance, impaired glucose metabolism, and deregulation of O-GlcNAcylation, may serve as molecular links between T2DM and AD. Research on these molecular links is reviewed and discussed in this chapter. Understanding of these molecular links will help uncover the disease mechanisms and design therapeutic strategies to prevent and treat these two devastating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad W (2013) Overlapped metabolic and therapeutic links between Alzheimer and diabetes. Mol Neurobiol 47(1):399–424

    Article  CAS  PubMed  Google Scholar 

  • Alfaro JF, Gong C-X, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG, Shabanowitz J, Stanley P (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A 109(19):7280–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrali SS, Qian Q, Özcan S (2007) Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 282(21):15589–15596

    Article  CAS  PubMed  Google Scholar 

  • Arafat HA, Katakam AK, Chipitsyna G, Gong Q, Vancha AR, Gabbeta J, Dafoe DC (2007) Osteopontin protects the islets and β-cells from interleukin-1 β-mediated cytotoxicity through negative feedback regulation of nitric oxide. Endocrinology 148(2):575–584

    Article  CAS  PubMed  Google Scholar 

  • Arias P, Rodriguez M, Szwarcfarb B, Sinay I, Moguilevsky J (1992) Effect of insulin on LHRH release by perifused hypothalamic fragments. Neuroendocrinology 56(3):415–418

    Article  CAS  PubMed  Google Scholar 

  • Arias EB, Kim J, Cartee GD (2004) Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53(4):921–930

    Article  CAS  PubMed  Google Scholar 

  • Arnold CS, Johnson GV, Cole RN, Dong DL-Y, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271(46):28741–28744

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61(5):661–666

    Article  PubMed  Google Scholar 

  • Arvanitakis Z, Schneider J, Wilson R, Li Y, Arnold S, Wang Z, Bennett D (2006) Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67(11):1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68(1):51–57

    Article  PubMed  Google Scholar 

  • Ball LE, Berkaw MN, Buse MG (2006) Identification of the major site of O-linked β-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Mol Cell Proteomics 5(2):313–323

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ (1998) Differential permeability of the blood–brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19(5):883–889

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18(9):1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Baskin DG, Schwartz MW, Sipols AJ, D’Alessio DA, Goldstein BJ, White MF (1994) Insulin receptor substrate-1 (IRS-1) expression in rat brain. Endocrinology 134(4):1952–1955

    Article  CAS  PubMed  Google Scholar 

  • Baudoin L, Issad T (2015) O-GlcNAcylation and inflammation: a vast territory to explore. Front Endocrinol 5:235

    Article  Google Scholar 

  • Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement 11(6):718–726

    Article  PubMed  Google Scholar 

  • Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, Smet-Nocca C, Lippens G, Hilaire G, Gijsen H (2013) Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau. P301L mice. PLoS One 8(12):e84442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6):514–516

    Article  CAS  PubMed  Google Scholar 

  • Boulton TG, Nye SH, Robbins DJ, Ip NY, Radzlejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65(4):663–675

    Article  CAS  PubMed  Google Scholar 

  • Brief DJ, Davis JD (1984) Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res Bull 12(5):571–575

    Article  CAS  PubMed  Google Scholar 

  • Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125

    Article  PubMed  Google Scholar 

  • Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57(4):660–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158. https://doi.org/10.1136/bmj.b158

    Article  PubMed  Google Scholar 

  • Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metabol 290(1):E1–E8

    Article  CAS  Google Scholar 

  • Butkinaree C, Park K, Hart GW (2010) O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800(2):96–106

    Article  CAS  PubMed  Google Scholar 

  • Chen S-j, Leonard JP (1996) Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J Neurochem 67(1):194–200

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liang Z, Blanchard J, Dai C-L, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong C-X (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Deng Y, Zhang B, Gong C-X (2014a) Deregulation of brain insulin signaling in Alzheimer’s disease. Neurosci Bull 30(2):282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liang Z, Tian Z, Blanchard J, C-l D, Chalbot S, Iqbal K, Liu F, Gong C-X (2014b) Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol 49(1):547–562

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Run X, Liang Z, Zhao Y, C-l D, Iqbal K, Liu F, Gong C-X (2014c) Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Front Aging Neurosci 6:100

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang J, Zhang B, Gong C-X (2016) Targeting insulin signaling for the treatment of Alzheimer’s disease. Curr Top Med Chem 16(5):485–492

    Article  CAS  PubMed  Google Scholar 

  • Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. NeuroMolecular Med 12(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowers I, Lavy S, Halpern L (1961) Effect of insulin administered intracisternally in dogs on the glucose level of the blood and the cerebrospinal fluid. Exp Neurol 3(2):197–205

    Article  CAS  Google Scholar 

  • Christie J, Wenthold R, Monaghan D (1999) Insulin causes a transient tyrosine phosphorylation of NR2A and NR2B NMDA receptor subunits in rat hippocampus. J Neurochem 72(4):1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Chun YS, Park Y, Oh HG, Kim T-W, Yang HO, Park MK, Chung S (2015) O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-β protein precursor via inhibition of endocytosis from the plasma membrane. J Alzheimers Dis 44(1):261–275

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278(45):44230–44237

    Article  CAS  PubMed  Google Scholar 

  • Clarke DW, Mudd L, Boyd FT, Fields M, Raizada MK (1986) Insulin is released from rat brain neuronal cells in culture. J Neurochem 47(3):831–836

    Article  CAS  PubMed  Google Scholar 

  • Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, Callaghan M, Arbuckle M, Behl C, Craft S (2015) Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 44(3):897–906

    Article  CAS  PubMed  Google Scholar 

  • Control CfD, Prevention (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. US Department of Health and Human Services 2014, Atlanta

    Google Scholar 

  • Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin L-W, Kovacina KS, Craft S (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4 allele. Am J Pathol 162(1):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS (2003) Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28(6):809–822

    Article  CAS  PubMed  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  • Daviglus ML, Plassman BL, Pirzada A, Bell CC, Bowen PE, Burke JR, Connolly ES, Dunbar-Jacob JM, Granieri EC, McGarry K (2011) Risk factors and preventive interventions for Alzheimer disease: state of the science. Arch Neurol 68(9):1185–1190

    Article  PubMed  Google Scholar 

  • De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63(7):2262–2272

    Article  PubMed  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao W-Q, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes – evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C-X (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol 175(5):2089–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dentin R, Hedrick S, Xie J, Yates J, Montminy M (2008) Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319(5868):1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Devaskar SU, Singh BS, Carnaghi LR, Rajakumar PA, Giddings SJ (1993) Insulin II gene expression in rat central nervous system. Regul Pept 48(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 269(11):8445–8454

    CAS  PubMed  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673

    Article  CAS  PubMed  Google Scholar 

  • Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol Biosyst 3(11):766–772

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Lazarus R, Wong L, Vellios M, Handelsman D (1991) Pulsatile LH secretion in streptozotocin-induced diabetes in the rat. J Endocrinol 131(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Dou J-T, Chen M, Dufour F, Alkon DL, Zhao W-Q (2005) Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 12(6):646–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Yan S, Chen X, Fu J, Chen M (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691

    Article  CAS  PubMed  Google Scholar 

  • Duffy KR, Pardridge WM (1987) Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 420(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Dwyer DS, Vannucci SJ, Simpson IA (2002) Expression, regulation, and functional role of glucose transporters (GLUTs) in brain. Int Rev Neurobiol 51:159–188

    Article  CAS  PubMed  Google Scholar 

  • Emmanuel Y, Cochlin LE, Tyler DJ, Jager CA, David Smith A, Clarke K (2013) Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance. Brain Behav 3(2):134–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106(4):466–472

    Article  CAS  PubMed  Google Scholar 

  • Ferreira IA, Mocking AI, Urbanus RT, Varlack S, Wnuk M, Akkerman J-WN (2005) Glucose uptake via glucose transporter 3 by human platelets is regulated by protein kinase B. J Biol Chem 280(38):32625–32633

    Article  CAS  PubMed  Google Scholar 

  • Fève B, Bastard J-P (2009) The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5(6):305–311

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 602(1):161–164

    Article  CAS  PubMed  Google Scholar 

  • Fisher TL, White MF (2004) Signaling pathways: the benefits of good communication. Curr Biol 14(23):R1005–R1007

    Article  CAS  PubMed  Google Scholar 

  • Förster S, Welleford AS, Triplett JC, Sultana R, Schmitz B, Butterfield DA (2014) Increased O-GlcNAc levels correlate with decreased O-GlcNAcase levels in Alzheimer disease brain. Biochim Biophys Acta 1842(9):1333–1339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster L, Ames N, Emery R (1991) Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav 50(4):745–749

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908(1):244–254

    Article  CAS  PubMed  Google Scholar 

  • Frank HJ, Pardridge WM (1981) A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes 30(9):757–761

    Article  CAS  PubMed  Google Scholar 

  • Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GD, O’Reilly DSJ, Packard CJ, Sattar N (2002) C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51(5):1596–1600

    Article  CAS  PubMed  Google Scholar 

  • Gandy JC, Rountree AE, Bijur GN (2006) Akt1 is dynamically modified with O-GlcNAc following treatments with PUGNAc and insulin-like growth factor-1. FEBS Lett 580(13):3051–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Miyazaki J-I, Hart GW (2003) The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 β-cells. Arch Biochem Biophys 415(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21(8):2561–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C-X, Liu F, Iqbal K (2016) O-GlcNAcylation: a regulator of tau pathology and neurodegeneration. Alzheimers Dement 12(10):1078–1089

    Article  PubMed  Google Scholar 

  • Griffith L, Mathes M, Schmitz B (1995) β-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J Neurosci Res 41(2):270–278

    Article  CAS  PubMed  Google Scholar 

  • Grillo C, Piroli G, Hendry R, Reagan L (2009) Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res 1296:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas CB, Kalinine E, Zimmer ER, Hansel G, Brochier AW, Oses JP, Portela LV, Muller AP (2016) Brain insulin administration triggers distinct cognitive and neurotrophic responses in young and aged rats. Mol Neurobiol 53(9):5807–5817

    Article  CAS  PubMed  Google Scholar 

  • Haj-Ali V, Mohaddes G, Babri S (2009) Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 123(6):1309

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine: peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265(5):2563–2568

    CAS  PubMed  Google Scholar 

  • Han J, Li E, Chen L, Zhang Y, Wei F, Liu J, Deng H, Wang Y (2015) The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 524(7564):243–246

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havrankova J, Schmechel D, Roth J, Brownstein M (1978) Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75(11):5737–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1):69–91

    Article  CAS  PubMed  Google Scholar 

  • Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide A-M, Krebs N, Machicao F, Fritsche A, Häring H-U, Staiger H (2011) Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS One 6(6):e21594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneberg N, Hoyer S (1994) Short-term or long-term intracerebroventricular (icv) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci Lett 175(1):153–156

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Lesniak M, Pert C, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17(4):1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18(7):902–904

    Article  CAS  PubMed  Google Scholar 

  • Hölscher C (2014) First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimers Dement 10(1):S33–S37

    Article  PubMed  Google Scholar 

  • Honda K, Kamisoyama H, Saneyasu T, Sugahara K, Hasegawa S (2007) Central administration of insulin suppresses food intake in chicks. Neurosci Lett 423(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Lee VM-Y (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272(31):19547–19553

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörsch D, Kahn CR (1999) Region-specific mRNA expression of phosphatidylinositol 3-kinase regulatory isoforms in the central nervous system of C57BL/6J mice. J Comp Neurol 415(1):105–120

    Article  PubMed  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–87

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp Gerontol 35:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96(9):1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chen R, Jia P, Fang Y, Liu T, Song N, Xu X, Ji J, Ding X (2017) Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radic Biol Med 103:121–132

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen KT, Iverfeldt K (2011) O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-β precursor protein (APP). Biochem Biophys Res Commun 404(3):882–886

    Article  CAS  PubMed  Google Scholar 

  • Jauch-Chara K, Friedrich A, Rezmer M, Melchert UH, Scholand-Engler HG, Hallschmid M, Oltmanns KM (2012) Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes 61(9):2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H-J, Kim Y-J, Eggert S, Chung KC, Choi KS, Park SA (2013) Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol 248:441–450

    Article  CAS  PubMed  Google Scholar 

  • Kapurniotu A, Bernhagen J, Greenfield N, Al-Abed Y, Teichberg S, Frank RW, Voelter W, Bucala R (1998) Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur J Biochem 251(1–2):208–216

    Article  CAS  PubMed  Google Scholar 

  • Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74(4):270–280

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Nam DW, Park SY, Song H, Hong HS, Boo JH, Jung ES, Kim Y, Baek JY, Kim KS (2013) O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol Aging 34(1):275–285

    Article  CAS  PubMed  Google Scholar 

  • Ko L-w, Ko EC, Nacharaju P, Liu W-K, Chang E, Kenessey A, Yen S-HC (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2):301–313

    Article  CAS  PubMed  Google Scholar 

  • Kopf SR, Baratti CM (1996) Memory modulation by post-training glucose or insulin remains evident at long retention intervals. Neurobiol Learn Mem 65(2):189–191

    Article  CAS  PubMed  Google Scholar 

  • Kopf SR, Baratti CM (1999) Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism. Neurobiol Learn Mem 71(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Kopf SR, Boccia MM, Baratti CM (1998) AF-DX 116, a presynaptic muscarinic receptor antagonist, potentiates the effects of glucose and reverses the effects of insulin on memory. Neurobiol Learn Mem 70(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Kurochkin IV, Goto S (1994) Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR (1995) Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 270(35):20801–20807

    Article  CAS  PubMed  Google Scholar 

  • Lee C-C, Kuo Y-M, Huang C-C, Hsu K-S (2009) Insulin rescues amyloid β-induced impairment of hippocampal long-term potentiation. Neurobiol Aging 30(3):377–387

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre T, Ferreira S, Dupont-Wallois L, Bussiere T, Dupire M-J, Delacourte A, Michalski J-C, Caillet-Boudin M-L (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of tau proteins – a role in nuclear localization. Biochim Biophys Acta 1619(2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir A-M, Mortuaire M, Vercoutter-Edouart A-S, Michalski J-C (2010) Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1800(2):67–79

    Article  CAS  PubMed  Google Scholar 

  • Leibson CL, Rocca WA, Hanson V, Cha R, Kokmen E, O’brien P, Palumbo P (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Leroy K, Brion J-P (1999) Developmental expression and localization of glycogen synthase kinase-3β in rat brain. J Chem Neuroanat 16(4):279–293

    Article  CAS  PubMed  Google Scholar 

  • Lesort M, Johnson G (2000) Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 99(2):305–316

    Article  CAS  PubMed  Google Scholar 

  • Lesort M, Jope RS, Johnson GV (1999) Insulin transiently increases tau phosphorylation. J Neurochem 72(2):576–584

    Article  CAS  PubMed  Google Scholar 

  • Li Z-G, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lu F, Wang J-Z, Gong C-X (2006) Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 23(8):2078–2086

    Article  PubMed  Google Scholar 

  • Li Z-g, Zhang W, Sima AA (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56(7):1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(29):10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong C-X (2009a) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132(Pt 7):1820–1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C-X (2009b) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer’s disease. J Neurochem 111(1):242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C-X (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead PA, Coghlan M, Rice SQ, Sutherland C (2001) Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression. Diabetes 50(5):937–946

    Article  CAS  PubMed  Google Scholar 

  • Loy CT, Schofield PR, Turner AM, Kwok JB (2014) Genetics of dementia. Lancet 383(9919):828–840

    Article  CAS  PubMed  Google Scholar 

  • Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase domain structure and substrate specificity. J Biol Chem 275(15):10983–10988

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger JA, Tang M-X, Stern Y, Shea S, Mayeux R (2001) Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154(7):635–641

    Article  CAS  PubMed  Google Scholar 

  • Ma Q-L, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ (2008) Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem 283(50):34687–34695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macauley MS, He Y, Gloster TM, Stubbs KA, Davies GJ, Vocadlo DJ (2010a) Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Chem Biol 17(9):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macauley MS, Shan X, Yuzwa SA, Gloster TM, Vocadlo DJ (2010b) Elevation of global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem Biol 17(9):949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maczurek A, Shanmugam K, Münch G (2008) Inflammation and the redox-sensitive AGE–RAGE pathway as a therapeutic target in Alzheimer’s disease. Ann N Y Acad Sci 1126(1):147–151

    Article  CAS  PubMed  Google Scholar 

  • Man H-Y, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000) Regulation of AMPA receptor–mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25(3):649–662

    Article  CAS  PubMed  Google Scholar 

  • Mao YF, Guo Z, Zheng T, Jiang Y, Yan Y, Yin X, Chen Y, Zhang B (2016) Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell 15(5):893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki S, Kanba S, Kiyohara Y (2010) Insulin resistance is associated with the pathology of Alzheimer disease The Hisayama Study. Neurology 75(9):764–770

    Article  CAS  PubMed  Google Scholar 

  • Maycox PR, Link E, Reetz A, Morris SA, Jahn R (1992) Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol 118(6):1379–1388

    Article  CAS  PubMed  Google Scholar 

  • McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC, Hanover JA (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci U S A 99(16):10695–10699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan MK, Andrews KM, Grossman SP (1992) Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiol Behav 51(4):753–766

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi T, Nakayama H, Itoh T, Kuwajima S, Aoki S, Atsumi T, Koike T (1993) Immunochemical detection of advanced glycation end products in renal cortex from STZ-induced diabetic rat. Diabetes 42(6):826–832

    Article  CAS  PubMed  Google Scholar 

  • Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31(2):224–243

    Article  CAS  PubMed  Google Scholar 

  • Morales-Corraliza J, Wong H, Mazzella MJ, Che S, Lee SH, Petkova E, Wagner JD, Hemby SE, Ginsberg SD, Mathews PM (2016) Brain-wide insulin resistance, tau phosphorylation changes, and hippocampal neprilysin and amyloid-β alterations in a monkey model of type 1 diabetes. J Neurosci 36(15):4248–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:180–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss A, Unger J, Moxley R, Livingston J (1990) Location of phosphotyrosine-containing proteins by immunocytochemistry in the rat forebrain corresponds to the distribution of the insulin receptor. Proc Natl Acad Sci U S A 87(12):4453–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq G, Khan JA, Kumosani TA, Kamal MA (2015) Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms. Saudi J Biol Sci 22(1):4–13

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Barber AJ, Antonetti DA, LaNoue KF, Robinson KA, Buse MG, Gardner TW (2001) Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 276(47):43748–43755

    Article  CAS  PubMed  Google Scholar 

  • Ngoh GA, Watson LJ, Facundo HT, Jones SP (2011) Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids 40(3):895–911

    Article  CAS  PubMed  Google Scholar 

  • Nogueira-Machado JA, Chaves MM (2008) From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert Opin Ther Targets 12(7):871–882

    Article  CAS  PubMed  Google Scholar 

  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002a) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566–572

    Article  CAS  PubMed  Google Scholar 

  • Obici S, Zhang BB, Karkanias G, Rossetti L (2002b) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8(12):1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Okereke OI, Kang JH, Cook NR, Gaziano JM, Manson JE, Buring JE, Grodstein F (2008) Type 2 diabetes mellitus and cognitive decline in two large cohorts of community-dwelling older adults. J Am Geriatr Soc 56(6):1028–1036

    Article  PubMed  Google Scholar 

  • Omary M, Ku N, Liao J, Price D (1997) Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem 31:105–140

    Google Scholar 

  • Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, Stern DM, Chen JX, Schmidt AM, Arancio O, Du Yan S (2008) Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J Neurosci 28(13):3521–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott A, Stolk R, Hofman A, van Harskamp F, Grobbee D, Breteler M (1996) Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia 39(11):1392–1397

    Article  CAS  PubMed  Google Scholar 

  • Ott A, Stolk R, Van Harskamp F, Pols H, Hofman A, Breteler M (1999) Diabetes mellitus and the risk of dementia the Rotterdam study. Neurology 53(9):1937–1937

    Article  CAS  PubMed  Google Scholar 

  • Pankratz SL, Tan EY, Fine Y, Mercurio AM, Shaw LM (2009) Insulin receptor substrate-2 regulates aerobic glycolysis in mouse mammary tumor cells via glucose transporter 1. J Biol Chem 284(4):2031–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM, Eisenberg J, Yang J (1985) Human blood—brain barrier insulin receptor. J Neurochem 44(6):1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Park CR, Seeley RJ, Craft S, Woods SC (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68(4):509–514

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Ryu J, Lee W (2005) O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med 37(3):220

    Article  CAS  PubMed  Google Scholar 

  • Patti M-E, Virkamäki A, Landaker EJ, Kahn CR, Yki-Järvinen H (1999) Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 48(8):1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Peila R, Rodriguez BL, Launer LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes 51(4):1256–1262

    Article  CAS  PubMed  Google Scholar 

  • Pérez A, Morelli L, Cresto JC, Castaño EM (2000) Degradation of soluble amyloid β-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 25(2):247–255

    Article  PubMed  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VM-Y, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423(6938):435–439

    Article  CAS  PubMed  Google Scholar 

  • Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, Biagio PLS, Di Carlo M (2011) Insulin-activated Akt rescues Aβ oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 10(5):832–843

    Article  CAS  PubMed  Google Scholar 

  • Plata-Salamán CR (1991) Insulin in the cerebrospinal fluid. Neurosci Biobehav Rev 15(2):243–258

    Article  PubMed  Google Scholar 

  • Plitzko D, Rumpel S, Gottmann K (2001) Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons. Eur J Neurosci 14(8):1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105(3):357–368

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 273(49):32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Rasgon NL, Kenna HA, Wroolie TE, Kelley R, Silverman D, Brooks J, Williams KE, Powers BN, Hallmayer J, Reiss A (2011) Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging 32(11):1942–1948

    Article  CAS  PubMed  Google Scholar 

  • Recio-Pinto E, Ishii DN (1984) Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res 302(2):323–334

    Article  CAS  PubMed  Google Scholar 

  • Reddy VP, Zhu X, Perry G, Smith MA (2009) Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 16(4):763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reger M, Watson G, Wn F, Baker L, Cholerton B, Keeling M, Belongia D, Fishel M, Plymate S, Schellenberg G (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27(3):451–458

    Article  CAS  PubMed  Google Scholar 

  • Reger MA, Watson G, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey I (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J Alzheimers Dis 13(3):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    Article  CAS  PubMed  Google Scholar 

  • Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ (1999) Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol 39(4):536–546

    Article  CAS  PubMed  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG (2003) Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 163(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert D (2005) Glucose metabolism and Alzheimer’s disease. Ageing Res Rev 4(2):240–257

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101(9):3100–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T (2011) Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab 97(2):366–376

    Article  PubMed  CAS  Google Scholar 

  • Singh BS, Rajakumar PA, Eves EM, Rosner MR, Wainer BH, Devaskar SU (1997) Insulin gene expression in immortalized rat hippocampal and pheochromocytoma-12 cell lines. Regul Pept 69(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Skeberdis VA, Lan J-y, Zheng X, Zukin RS, Bennett MV (2001) Insulin promotes rapid delivery of N-methyl-D-aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci U S A 98(6):3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW (2005) Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280(38):32944–32956

    Article  CAS  PubMed  Google Scholar 

  • Smet-Nocca C, Broncel M, Wieruszeski J-M, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP (2011) Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst 7(5):1420–1429

    Article  CAS  PubMed  Google Scholar 

  • Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14(7):1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Špolcová A, Mikulášková B, Kršková K, Gajdošechová L, Zórad Š, Olszanecki R, Suski M, Bujak-Giżycka B, Železná B, Maletínská L (2014) Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity-and age-induced peripheral insulin resistance: a study in Zucker rats. BMC Neurosci 15(1):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes 52(3):812–817

    Article  CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? J Alzheimers Dis 7:63–80

    Article  CAS  PubMed  Google Scholar 

  • Steyn NP, Mann J, Bennett P, Temple N, Zimmet P, Tuomilehto J, Lindstrom J, Louheranta A (2004) Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr 7(1A; SPI):147–166

    CAS  PubMed  Google Scholar 

  • Suzanne M, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88(4):548–559

    Article  CAS  Google Scholar 

  • Talbot K, Wang H-Y, Kazi H, Han L-Y, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 91(11):4766–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vosseller K, Wells L, Lane MD, Hart GW (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 99(8):5313–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Q, Xiong Z, Man H, Ackerley C, Braunton J, Lu W, Becker L, MacDonald J, Wang Y (1997) Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388(6643):686–690

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6(8):1365–1379

    Article  CAS  PubMed  Google Scholar 

  • Wang AC, Jensen EH, Rexach JE, Vinters HV, Hsieh-Wilson LC (2016) Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A 113(52):15120–15125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yang F, Petyuk VA, Shukla AK, Monroe ME, Gritsenko MA, Rodland KD, Smith RD, Qian WJ, Gong CX, Liu T (2017a) Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer’s disease. J Pathol 243(1):78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XF, Lin X, Li DY, Zhou R, Greenbaum J, Chen YC, Zeng CP, Peng LP, Wu KH, Ao ZX, Lu JM, Guo YF, Shen J, Deng HW (2017b) Linking Alzheimer’s disease and type 2 diabetes: novel shared susceptibility genes detected by cFDR approach. J Neurol Sci 380:262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson GS, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Werther GA, Hogg A, Oldfield BJ, Mckinley MJ, Figdor R, Allen AM, Mendelsohn FA (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121(4):1562–1570

    Article  CAS  PubMed  Google Scholar 

  • Willette AA, Johnson SC, Birdsill AC, Sager MA, Christian B, Baker LD, Craft S, Oh J, Statz E, Hermann BP (2015) Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimers Dement 11(5):504–510.e1

    Article  PubMed  Google Scholar 

  • Wozniak M, Rydzewski B, Baker SP, Raizada MK (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 22(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Yan SF, Ramasamy R, Schmidt AM (2008) Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Rev Endocrinol 4(5):285–293

    Article  CAS  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969

    Article  CAS  PubMed  Google Scholar 

  • Yao PJ, Coleman PD (1998) Reduction of O-linked N-acetylglucosamine-modified assembly protein-3 in Alzheimer’s disease. J Neurosci 18(7):2399–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarchoan M, Arnold SE (2014) Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63(7):2253–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Yau P, Javier D, Ryan C, Tsui W, Ardekani B, Ten S, Convit A (2010) Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus. Diabetologia 53(11):2298–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yetik-Anacak G, Catravas JD (2006) Nitric oxide and the endothelium: history and impact on cardiovascular disease. Vasc Pharmacol 45(5):268–276

    Article  CAS  Google Scholar 

  • Young WS (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8(2):93–97

    Article  CAS  PubMed  Google Scholar 

  • Yu C-H, Si T, Wu W-H, Hu J, Du J-T, Zhao Y-F, Li Y-M (2008) O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau. Biochem Biophys Res Commun 375(1):59–62

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4(8):483–490

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ (2011) Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40(3):857–868

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ (2014a) O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol 426(8):1736–1752

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Zhu Y, McEachern EJ, Silverman MA, Watson NV (2014b) Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener 9(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24(49):11120–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Xiang Z, Haroutunian V, Buxbaum JD, Stetka B, Pasinetti GM (2007) Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer’s disease. Neurobiol Aging 28(6):824–830

    Article  CAS  PubMed  Google Scholar 

  • Zhao W-Q, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the New York State Office for People with Developmental Disabilities (Staten Island, New York, USA), the Second Affiliated Hospital, School of Medicine, Zhejiang University (Hangzhou, China), and a research grant from the Natural Science Foundation of China (81400866).

Conflict of Interest

C.-X.G. serves on the scientific advisory board of Alectos Therapeutics and filed a patent application dealing with O-GlcNAcylation treatment for ischemic brain injury. Y.C. and C.-X.G. hold a patent on the prevention of anesthesia-induced memory loss by using intranasal insulin. The other author confirms that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y., Yu, Q., Gong, CX. (2019). Molecular Connection Between Diabetes and Dementia. In: Nakabeppu, Y., Ninomiya, T. (eds) Diabetes Mellitus. Advances in Experimental Medicine and Biology, vol 1128. Springer, Singapore. https://doi.org/10.1007/978-981-13-3540-2_6

Download citation

Publish with us

Policies and ethics