Skip to main content

Future Developments

  • Chapter
  • First Online:
  • 1200 Accesses

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

Abstract

This chapter collects additional remarks on the previous chapters and several open problems for future research. This might help find research topics for students and researchers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bakoyannis G, Touloumi G (2017) Impact of dependent left truncation in semiparametric competing risks methods: a simulation study. Commun Stat Simul Comput 46(3):2025–2042

    Article  MathSciNet  Google Scholar 

  • Bickel PJ, Levina E (2004) Some theory for Fisher’s linear discriminant function, naive Bayes, and some alternatives when there are many more variables than observations. Bernoulli 10(6):989–1010

    Article  MathSciNet  Google Scholar 

  • Burzykowski T, Molenberghs G, Buyse M (eds) (2005) The evaluation of surrogate endpoints. Springer, New York

    MATH  Google Scholar 

  • Burzykowski T, Molenberghs G, Buyse M, Geys H, Renard D (2001) Validation of surrogate end points in multiple randomized clinical trials with failure time end points. Appl Stat 50(4):405–422

    MathSciNet  MATH  Google Scholar 

  • Chaieb LL, Rivest LP, Abdous B (2006) Estimating survival under a dependent truncation. Biometrika 93(3):655–669

    Article  MathSciNet  Google Scholar 

  • Chiou SH, Qian J, Mormino E et al (2018) Permutation tests for general dependent truncation. Comput Stat Data Anal 128:308–324

    Article  MathSciNet  Google Scholar 

  • Choi J, Oh I, Seo S, Ahn J (2018) G2Vec: Distributed gene representations for identification of cancer prognostic genes. Sci Rep 8(1):13729

    Article  Google Scholar 

  • Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97(457):77–87

    Article  MathSciNet  Google Scholar 

  • Emura T, Chen YH, Chen HY (2012) Survival prediction based on compound covariate under Cox proportional hazard models. PLoS ONE 7(10):e47627. https://doi.org/10.1371/journal.pone.0047627

    Article  Google Scholar 

  • Emura T, Matsui S, Chen HY (2019) compound.Cox: univariate feature selection and compound covariate for predicting survival. Comput Methods Programs Biomed 168:21–37

    Article  Google Scholar 

  • Emura T, Michimae H (2017) A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environ Ecol Stat 24(1):151–173

    Article  MathSciNet  Google Scholar 

  • Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model. TEST 24(4):734–751

    Article  MathSciNet  Google Scholar 

  • Emura T, Nakatochi M, Murotani K, Rondeau V (2017) A joint frailty-copula model between tumour progression and death for meta-analysis. Stat Methods Med Res 26(6):2649–2666

    Article  MathSciNet  Google Scholar 

  • Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model. Stat Methods Med Res 27(9):2842–2858

    Article  MathSciNet  Google Scholar 

  • Emura T, Pan CH (2017) Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach, Stat Pap. https://doi.org/10.1007/s00362-017-0947-z

  • Emura T, Wang W (2010) Testing quasi-independence for truncation data. J Multivar Anal 101:223–239

    Article  MathSciNet  Google Scholar 

  • Emura T, Wang W (2012) Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. J Multivar Anal 110:171–188

    Article  MathSciNet  Google Scholar 

  • Escarela G, Carrière JF (2003) Fitting competing risks with an assumed copula. Statist Methods Med Res 12(4):333–349

    Article  MathSciNet  Google Scholar 

  • González JR, Fernandez E, Moreno V, Ribes J et al (2005) Sex differences in hospital readmission among colorectal cancer patients. J Epidemiol Community Health 59(6):506–511

    Article  Google Scholar 

  • Hansen BE, Racine JS (2012) Jackknife model averaging. J Econometrics 167(1):38–46

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  • Hyde J (1980) Survival analysis with incomplete observations. In: Miller RG, Efron B, Brown BW, Moses LE (eds) Biostatistics casebook. Wiley, New York, pp 31–46

    Google Scholar 

  • Kim M, Oh I, Ahn J (2018) An improved method for prediction of cancer prognosis by network learning. Genes 9:478

    Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis techniques for censored and truncated data. Springer, New York

    MATH  Google Scholar 

  • Li Y, Taylor JM, Elliott MR, Sargent DJ (2011) Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials. Biostatistics 12(3):478–492

    Article  Google Scholar 

  • Li Z, Chinchilli VM, Wang M (2019) A Bayesian joint model of recurrent events and a terminal event. Biometrical Journal 61(1):187–202

    Article  MathSciNet  Google Scholar 

  • Molenberghs G, Verbeke G, Efendi A, Braekers R, Demétrio CG (2015) A combined gamma frailty and normal random-effects model for repeated, over dispersed time-to-event data. Stat Methods Med Res 24(4):434–452

    Article  MathSciNet  Google Scholar 

  • Renfro LA, Shi Q, Sargent DJ, Carlin BP (2012) Bayesian adjusted R2 for the meta-analytic evaluation of surrogate time-to-event endpoints in clinical trials. Stat Med 31(8):743–761

    Article  MathSciNet  Google Scholar 

  • Rodríguez-Girondo M, Deelen J, Slagboom EP, Houwing-Duistermaat JJ (2018) Survival analysis with delayed entry in selected families with application to human longevity. Stat Methods Med Res 27(3):933–954

    Article  MathSciNet  Google Scholar 

  • Rondeau V, Gonzalez JR (2005) frailtypack: a computer program for the analysis of correlated failure time data using penalized likelihood estimation. Comput Methods Programs Biomed 80(2):154–164

    Article  Google Scholar 

  • Rondeau V, Mauguen A, Laurent A, Berr C, Helmer C (2017) Dynamic prediction models for clustered and interval-censored outcomes: investigating the intra-couple correlation in the risk of dementia. Stat Methods Med Res 26(5):2168–2183

    Article  MathSciNet  Google Scholar 

  • Rondeau V, Pignon JP, Michiels S (2015) A joint model for dependence between clustered times to tumour progression and deaths: a meta-analysis of chemotherapy in head and neck cancer. Stat Methods Med Res 24(6):711–729

    Article  MathSciNet  Google Scholar 

  • Rotolo F, Paoletti X, Burzykowski T, Buyse M, Michiels S (2017) Poisson approach to the validation of failure time surrogate endpoints in individual patient data meta-analyses, Stat Methods Med Res. https://doi.org/10.1177/0962280217718582

  • Rotolo F, Paoletti X. Michiels S (2018). surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Comput Methods Programs Biomed 155: 189–198

    Google Scholar 

  • Rupp T, Zuckerman D (2017) Quality of life, overall survival, and costs of cancer drugs approved based on surrogate endpoints. JAMA Internal Medicine 177(2):276–277

    Article  Google Scholar 

  • van Houwelingen HC, Putter H (2011) Dynamic prediction in clinical survival analysis. CRC Press, New York

    MATH  Google Scholar 

  • Wang JH, Chen YH (2018) Overlapping group screening for detection of gene-gene interactions: application to gene expression profiles with survival trait. BMC Bioinformatics 201819:335

    Article  Google Scholar 

  • Zhao SD, Parmigiani G, Huttenhower C, Waldron L (2014) Más-o-menos: a simple sign averaging method for discrimination in genomic data analysis. Bioinformatics 30(21):3062–3069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emura, T., Matsui, S., Rondeau, V. (2019). Future Developments. In: Survival Analysis with Correlated Endpoints. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3516-7_6

Download citation

Publish with us

Policies and ethics