Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 276 Accesses

Abstract

In general, the research methodology is divided into several sections. First, the reaction behavior of β-Gal-catalyzed conversion of lactose was studied in order to validate obtained information from the literature. Subsequently, a depth study on the reaction was carried out in the enzymatic hollow fiber membrane reactor. The study mostly emphasizes the effect of transmembrane pressure (TMP) on the β-Gal-catalyzed conversion of lactose. Before that, an appropriate method for the immobilization of β-Gal on the membrane surface was developed. The hydrodynamic study was also carried out in order to choose the most suitable configuration for immobilization and reaction on the hollow fiber membrane. The significance of the effect of TMP on the reaction was analyzed assisted by the coupled kinetics reaction and mass transfer model. The details on the research methodology are described accordingly with the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β-galactosidase. Food Bioprod Process 90(2):351–359

    Article  CAS  Google Scholar 

  2. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  3. Beicha A, Zaamouche R, Sulaiman NM (2009) Dynamic ultrafiltration model based on concentration polarization-cake layer interplay. Desalination 242(1):138–148

    Article  CAS  Google Scholar 

  4. Boon M, Janssen A, Van der Padt A (1999) Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from Bacillus circulans. Biotechnol Bioeng 64(5):558–567

    Article  CAS  PubMed  Google Scholar 

  5. Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R (2003) Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzym Microb. Technol. 33(1):3–11

    Article  CAS  Google Scholar 

  6. Carreiro-Lewandowski E (2013) Basic principles and practice of clinical chemistry. In: Bishop ML, Fody EP, Schoeff LE (eds) Clinical chemistry: principles, techniques, and correlations, 7th edn. Lippincott Williams and Wilkins, Philadelphia, pp 26–27

    Google Scholar 

  7. Jönsson A-S (2013) Microfiltration, ultrafiltration and diafiltration. In: Ramaswamy S, Huang HJ, Ramarao BV (eds) Separation and purification technologies in biorefineries, 1st edn. Wiley, Chichester, pp 216–221

    Google Scholar 

  8. Kim CS, Ji E-S, Oh D-K (2004) A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem Biophys Res Commun 316(3):738–743

    Article  CAS  PubMed  Google Scholar 

  9. Kim K, Lee K, Cho K, Park C (2002) Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J Membr Sci 199(1):135–145

    Article  CAS  Google Scholar 

  10. Koros W, Ma Y, Shimidzu T (1996) Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl Chem 68(7):1479–1489

    Article  CAS  Google Scholar 

  11. Marangoni AG (2003) Enzyme kinetics: a modern approach. Wiley, New Jersey

    Google Scholar 

  12. Nagy E (2012) Basic equations of the mass transport through a membrane layer. Elsevier, London

    Google Scholar 

  13. Nagy E, Kulcsár E, Nagy A (2011) Membrane mass transport by nanofiltration: coupled effect of the polarization and membrane layers. J Membr Sci 368(1):215–222

    Article  CAS  Google Scholar 

  14. Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114(4):418–423

    Article  CAS  PubMed  Google Scholar 

  15. Portaccio M, Stellato S, Rossi S, Bencivenga U, Eldin MM, Gaeta F, Mita D (1998) Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enzym Microb Technol 23(1):101–106

    Article  CAS  Google Scholar 

  16. Rodriguez-Fernandez M, Cardelle-Cobas A, Villamiel M, Banga JR (2011) Detailed kinetic model describing new oligosaccharides synthesis using different β-galactosidases. J Biotechnol 153(3):116–124

    Article  CAS  PubMed  Google Scholar 

  17. Shukla H, Chaplin M (1993) Nocompetitive inhibition of β-galactosidase (A. oryzae) by galactose. Enzym Microb Technol 15(4):297–299

    Article  CAS  Google Scholar 

  18. Sun C, Tang T, Uludağ H, Cuervo Javier E (2011) Molecular dynamics simulations of DNA/PEI complexes: Effect of PEI branching and protonation state. Biophys J 100(11):2754–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka Y, Kagamiishi A, Kiuchi A, Horiuchi T (1975) Purification and properties of β-galactosidase from Aspergillus oryzae. J Biochem 77(1):241–247

    CAS  PubMed  Google Scholar 

  20. Van Rantwijk F, Woudenberg-van Oosterom M, Sheldon R (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B Enzym 6(6):511–532

    Article  Google Scholar 

  21. Vekshin N (2002) Photonics of biopolymers, 1st edn. Springer, New York

    Book  Google Scholar 

  22. Vera C, Guerrero C, Illanes A (2011) Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohyd Res 346(6):745–752

    Article  CAS  Google Scholar 

  23. Vera C, Guerrero C, Illanes A, Conejeros R (2011) A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol Bioeng 108(10):2270–2279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadzil Noor Gonawan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonawan, F. (2019). Research Methodology. In: Immobilized β-Galactosidase-Mediated Conversion of Lactose: Process, Kinetics and Modeling Studies. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-3468-9_3

Download citation

Publish with us

Policies and ethics