Literature Review

Part of the Springer Theses book series (Springer Theses)


The enzymatic conversion of lactose to galacto-oligosaccharides (GOS) is impeded by the galactose inhibitor. The inhibition effects on the enzymes can be minimized by enzymatic membrane reactor where the inhibitors can be continuously removed from the reaction system. This review focuses on the β-galactosidase-catalyzed conversion of lactose in the membrane reactors. The effect of reaction parameters, its reaction kinetic, and mechanism is also discussed. In addition, the review covers the type of reactors employed for lactose conversion and exploring the appropriate setup or configuration of an enzymatic membrane reactor for continuous reaction and separation. The basic of the mass transfer model in the membrane is also discussed.


  1. 1.
    Albayrak N, Yang ST (2002) Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog 18(2):240–251PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77(1):8–19PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β galactosidase. Food Bioprod Process 90(2):351–359CrossRefGoogle Scholar
  4. 4.
    Baker RW (2004) Membrane Technology and Applications, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Benjamins E, Boxem L, KleinJan-Noeverman J, Broekhuis TA (2014) Assessment of repetitive batch-wise synthesis of galacto-oligosaccharides from lactose slurry using immobilised β-galactosidase from Bacillus circulans. Int Dairy J 38(2):160–168CrossRefGoogle Scholar
  6. 6.
    Bernal C, Sierra L, Mesa M (2012) Improvement of thermal stability of β-galactosidase from Bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica. J Mol Catal B Enzym 84:166–172CrossRefGoogle Scholar
  7. 7.
    Bhatia S, Sing Long W, Harun Kamaruddin A (2004) Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester: Modeling and experimental studies. Chem Eng Sci 59(22–23):5061–5068CrossRefGoogle Scholar
  8. 8.
    Boon M, Janssen A, Van der Padt A (1999) Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from Bacillus circulans. Biotechnol Bioeng 64(5):558–567PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bowen W, Mohammad AW (1998) Characterization and prediction of nanofiltration membrane performance—A general assessment. Chem Eng Res Des 76(8):885–893CrossRefGoogle Scholar
  10. 10.
    Bowen WR, Welfoot JS (2002) Modelling the performance of membrane nanofiltration—Critical assessment and model development. Chem Eng Sci 57(7):1121–1137CrossRefGoogle Scholar
  11. 11.
    Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R (2003) Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: Kinetics and modelling. Enzyme and Microbial Technology 33(1):3–11CrossRefGoogle Scholar
  12. 12.
    Cardelle-Cobas A, Corzo N, Martínez-Villaluenga C, Olano A, Villamiel M (2011) Effect of reaction conditions on lactulose-derived trisaccharides obtained by transgalactosylation with β-galactosidase of Kluyveromyces lactis. Eur Food Res Technol 233(1):89–94CrossRefGoogle Scholar
  13. 13.
    Cavaille D, Combes D (1995) Characterization of β-galactosidase from Kluyveromyces lactis. Biotechnol Appl Biochem 22(1):55–64Google Scholar
  14. 14.
    Chakraborty S, Drioli E, Giorno L (2012) Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. Biomass Bioenerg 46:574–583CrossRefGoogle Scholar
  15. 15.
    Chan C, Bérubé P, Hall E (2011) Relationship between types of surface shear stress profiles and membrane fouling. Water Res 45(19):6403–6416PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cheison SC, Wang Z, Xu S-Y (2007) Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor. Int Dairy J 17(4):393–402CrossRefGoogle Scholar
  17. 17.
    Chen C-S, Hsu C-K, Chiang B-H (2002) Optimization of the enzymic process for manufacturing low-lactose milk containing oligosaccharides. Process Biochem 38(5):801–808CrossRefGoogle Scholar
  18. 18.
    Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, Zhang H, Zhang H (2009) Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 92(2):491–498PubMedCrossRefGoogle Scholar
  19. 19.
    Cho Y-J, Shin H-J, Bucke C (2003) Purification and biochemical properties of a galactooligosaccharide producing β-galactosidase from Bullera singularis. Biotech Lett 25(24):2107–2111CrossRefGoogle Scholar
  20. 20.
    Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, Rastall RA (2005) Synthesis of galacto-oligosaccharide from lactose using β-galactosidase from Kluyveromyces lactis: Studies on batch and continuous UF membrane-fitted bioreactors. Biotechnol Bioeng 89(4):434–443CrossRefGoogle Scholar
  21. 21.
    Cohen Y (1988) Hydrodynamic thickness of adsorbed polymers in steady shear flow. Macromolecules 21(2):494–499CrossRefGoogle Scholar
  22. 22.
    Coker JA, Brenchley JE (2006) Protein engineering of a cold-active β-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity. Extremophiles 10(6):515–524PubMedCrossRefGoogle Scholar
  23. 23.
    Cowan DA, Daniel RM, Martin AM, Morgan HW (1984) Some properties of a β-galactosidase from an extremely thermophilic bacterium. Biotechnol Bioeng 26(10):1141–1145PubMedCrossRefGoogle Scholar
  24. 24.
    Czermak P, Ebrahimi M, Grau K, Netz S, Sawatzki G, Pfromm PH (2004) Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process. J Membr Sci 232(1):85–91CrossRefGoogle Scholar
  25. 25.
    Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2010) A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor. Ind Eng Chem Res 50(2):806–816CrossRefGoogle Scholar
  26. 26.
    Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959CrossRefGoogle Scholar
  27. 27.
    Dekker RF (1989) Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite. Appl Biochem Biotechnol 22(3):289–310PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Deschavanne PJ, Viratelle OM, Yon JM (1978) Conformational adaptability of the active site of beta-galactosidase. Interaction of the enzyme with some substrate analogous effectors. Journal of Biological Chemistry 253 (3):833–837Google Scholar
  29. 29.
    Dickson RC, Dickson LR, Markin JS (1979) Purification and properties of an inducible beta-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol 137(1):51–61PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ebrahimi M, Placido L, Engel L, Ashaghi KS, Czermak P (2010) A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 250(3):1105–1108CrossRefGoogle Scholar
  31. 31.
    Edward JT (1970) Molecular volumes and the stokes-einstein equation. J Chem Educ 47(4):261CrossRefGoogle Scholar
  32. 32.
    Engel L, Schneider P, Ebrahimi M, Czermak P (2007) Immobilization of β-galactosidase in adsorptive membranes for the continuous production of galacto-oligosaccharides from lactose. Open Food Sci J 1:17–23CrossRefGoogle Scholar
  33. 33.
    Fischer C, Kleinschmidt T (2015) Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. Int Dairy J 48:15–22CrossRefGoogle Scholar
  34. 34.
    Fischer J, Guidini CZ, Santana LNS, de Resende MM, Cardoso VL, Ribeiro EJ (2013) Optimization and modeling of lactose hydrolysis in a packed bed system using immobilized β-galactosidase from Aspergillus oryzae. J Mol Catal B Enzym 85–86:178–186CrossRefGoogle Scholar
  35. 35.
    Foda MI, Lopez-Leiva M (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem 35(6):581–587CrossRefGoogle Scholar
  36. 36.
    Freitas FF, Marquez LD, Ribeiro GP, Brandão GC, Cardoso VL, Ribeiro EJ (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58:33–38CrossRefGoogle Scholar
  37. 37.
    Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem 97(3):426–430CrossRefGoogle Scholar
  38. 38.
    Giorno L, Drioli E (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol 18(8):339–349PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gonzalez R, Ebrahimi M, Czermak P (2009) Experimental and modeling study of galactosyl-oligosaccharides formation in continuous recycle membrane reactors (CRMR). Open Food Sci J 3:1–9CrossRefGoogle Scholar
  40. 40.
    Goodman RE, Pederson DM (1976) β-Galactosidase from Bacillus stearothermophilus. Can J Microbiol 22(6):817–825PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gosling A, Alftrén J, Stevens GW, Barber AR, Kentish SE, Gras SL (2009) Facile pretreatment of Bacillus circulans β-galactosidase increases the yield of galactosyl oligosaccharides in milk and lactose reaction systems. J Agric Food Chem 57(24):11570–11574PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Guidini CZ, Fischer J, Santana LNS, Cardoso VL, Ribeiro EJ (2010) Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking. Biochem Eng J 52(2):137–143CrossRefGoogle Scholar
  43. 43.
    Güleç H, Gürdaş S, Albayrak N, Mutlu M (2010) Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioproc E 15(6):1006–1015CrossRefGoogle Scholar
  44. 44.
    Güleç HA (2013) Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: Effect of surface characteristics. Colloids Surf, B 104:83–90CrossRefGoogle Scholar
  45. 45.
    Gürdaş S, Güleç HA, Mutlu M (2012) Immobilization of Aspergillus oryzae β-galactosidase onto Duolite A568 resin via simple adsorption mechanism. Food Bioprocess Technol 5(3):904–911CrossRefGoogle Scholar
  46. 46.
    Haider T, Husain Q (2007) Calcium alginate entrapped preparations of Aspergillus oryzae β galactosidase: Its stability and applications in the hydrolysis of lactose. Int J Biol Macromol 41(1):72–80PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hernández FJ, Antonia P, Gómez D, Rubio M, Víllora G (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67(1):121–126CrossRefGoogle Scholar
  48. 48.
    Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118(3):1279–1286CrossRefGoogle Scholar
  49. 49.
    Holsinger VH (2012) Lactose. In: Wong NP, Jenness R, Keeny M, Marth EH (eds) Fundamentals of dairy chemistry, 3rd edn. Van Nostrand Reinhold Company, New York, pp 279–296Google Scholar
  50. 50.
    Hsu C-A, Lee S-L, Chou C-C (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55(6):2225–2230PubMedCrossRefGoogle Scholar
  51. 51.
    Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem 46(1):245–252CrossRefGoogle Scholar
  52. 52.
    Hunziker O, Nissen B (1927) Lactose solubility and lactose crystal formation. J Dairy Sci 10(2):139–154CrossRefGoogle Scholar
  53. 53.
    Ida S (2014) PES (Poly(ether sulfone)), Polysulfone. In: Kobayashi S, Müllen K (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, pp 1–8Google Scholar
  54. 54.
    Illanes A (2011) Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 4(6):1–9Google Scholar
  55. 55.
    Iqbal S, Nguyen T-H, Nguyen HA, Nguyen TT, Maischberger T, Kittl R, Haltrich D (2011) Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem 59(8):3803–3811PubMedCrossRefGoogle Scholar
  56. 56.
    Iqbal S, Nguyen T-H, Nguyen TT, Maischberger T, Haltrich D (2010) β-Galactosidase from Lactobacillus plantarum WCFS1: Biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohyd Res 345(10):1408–1416CrossRefGoogle Scholar
  57. 57.
    Ishikawa E, Sakai T, Ikemura H, Matsumoto K, Abe H (2005) Identification, cloning, and characterization of a Sporobolomyces singularis β-galactosidase-like enzyme involved in galacto-oligosaccharide production. J Biosci Bioeng 99(4):331–339PubMedCrossRefGoogle Scholar
  58. 58.
    Iwasaki K-I , Nakajima M, Nakao S-I (1996) Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem 31(1):69–76CrossRefGoogle Scholar
  59. 59.
    Ji E-S, Park N-H, Oh D-K (2005) Galacto-oligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World J Microbiol Biotechnol 21(5):759–764CrossRefGoogle Scholar
  60. 60.
    Jochems P, Satyawali Y, Van Roy S, Doyen W, Diels L, Dejonghe W (2011) Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane. Enzyme Microb Technol 49(6):580–588PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Jovanovic-Malinovska R, Fernandes P, Winkelhausen E, Fonseca L (2012) Galacto-oligosaccharides synthesis from lactose and whey by β-galactosidase immobilized in PVA. Appl Biochem Biotechnol 168(5):1197–1211CrossRefGoogle Scholar
  62. 62.
    Jurado E, Camacho F, Luzon G, Vicaria J (2002) A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology 31(3):300–309CrossRefGoogle Scholar
  63. 63.
    Jurado E, Camacho F, Luzon G, Vicaria J (2004) Kinetic model for lactose hidrolysis in a recirculation hollow-fibre bioreactor. Chem Eng Sci 59(2):397–405CrossRefGoogle Scholar
  64. 64.
    Jurado E, Camacho F, Luzon G, Vicaria J (2006) Influence of the hollow-fibre membrane on the stability of β-galactosidase and on lactose hydrolysis: Kinetic models including adsorption of the enzyme onto the membrane. Enzyme Microbial Technol 39(5):1008–1015CrossRefGoogle Scholar
  65. 65.
    Kim CS, Ji E-S, Oh D-K (2004) A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem Biophys Res Commun 316(3):738–743CrossRefGoogle Scholar
  66. 66.
    Kovács Z, Samhaber W (2008) Characterization of nanofiltration membranes with uncharged solutes. Membrántechnika 12(2):22–36Google Scholar
  67. 67.
    Ladero M, Santos A, Garcia-Ochoa F (2000) Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme Microbial Technol 27(8):583–592CrossRefGoogle Scholar
  68. 68.
    Ladero M, Santos A, Garcıa J, Carrascosa A, Pessela B, Garcia-Ochoa F (2002) Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme Microbial Technol 30(3):392–405CrossRefGoogle Scholar
  69. 69.
    Lau SY, Gonawan FN, Kamaruddin AH, Uzir MH (2013) Enzymatic deracemization of (R, S)-ibuprofen ester via lipase-catalyzed membrane reactor. Ind Eng Chem Res 52(27):9441–9453CrossRefGoogle Scholar
  70. 70.
    Li W, Sun Y, Ye H, Zeng X (2010) Synthesis of oligosaccharides with lactose and N-acetylglucosamine as substrates by using β-d-galactosidase from Bacillus circulans. Eur Food Res Technol 231(1):55–63CrossRefGoogle Scholar
  71. 71.
    Li W, Xiang X, Tang S, Hu B, Tian L, Sun Y, Ye H, Zeng X (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-D-galactosidase from Bacillus circulans. J Agric Food Chem 57(9):3927–3933PubMedCrossRefGoogle Scholar
  72. 72.
    Lindmark-Månsson H, Fondén R, Pettersson H-E (2003) Composition of Swedish dairy milk. Int Dairy J 13(6):409–425CrossRefGoogle Scholar
  73. 73.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666CrossRefGoogle Scholar
  74. 74.
    Mahoney RR (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem 63(2):147–154CrossRefGoogle Scholar
  75. 75.
    Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D (2010) β-Galactosidase from Lactobacillus pentosus: Purification, characterization and formation of galacto-oligosaccharides. Biotechnol J 5(8):838–847PubMedCrossRefGoogle Scholar
  76. 76.
    Maksimainen M, Paavilainen S, Hakulinen N, Rouvinen J (2012) Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulans sp. alkalophilus. FEBS J 279(10):1788–1798PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Marangoni AG (2003) Enzyme kinetics: a modern approach. Wiley, New JerseyGoogle Scholar
  78. 78.
    Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M (2008) Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem 107(1):258–264CrossRefGoogle Scholar
  79. 79.
    Mateo C, Monti R, Pessela BC, Fuentes M, Torres R, Manuel Guisán J, Fernández‐Lafuente R (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20(4):1259–1262Google Scholar
  80. 80.
    Maugard T, Gaunt D, Legoy MD, Besson T (2003) Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized β-galactosidase from Kluyveromyces lactis. Biotech Lett 25(8):623–629CrossRefGoogle Scholar
  81. 81.
    Mozaffar Z, Nakanishi K, Matsuno R (1986) Continuous production of galacto-oligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl Microbiol Biotechnol 25(3):224–228Google Scholar
  82. 82.
    Nagy E (2012) Basic equations of the mass transport through a membrane layer. Elsevier, LondonGoogle Scholar
  83. 83.
    Nagy E, Kulcsár E, Nagy A (2011) Membrane mass transport by nanofiltration: coupled effect of the polarization and membrane layers. J Membr Sci 368(1):215–222CrossRefGoogle Scholar
  84. 84.
    Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72(4):720–725PubMedCrossRefGoogle Scholar
  85. 85.
    Nakkharat P, Haltrich D (2006) Purification and characterisation of an intracellular enzyme with beta-glucosidase and beta-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J. Biotechnology 123(3):304–313Google Scholar
  86. 86.
    Nakkharat P, Haltrich D (2007) β-Galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor. World J Microbiol Biotechnol 23(6):759–764CrossRefGoogle Scholar
  87. 87.
    Nath A, Bhattacharjee C, Chowdhury R (2013) Synthesis and separation of galacto-oligosaccharides using membrane bioreactor. Desalination 316:31–41CrossRefGoogle Scholar
  88. 88.
    Neri DF, Balcão VM, Costa RS, Rocha IC, Ferreira EM, Torres DP, Rodrigues LR, Carvalho LB, Teixeira JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115(1):92–99CrossRefGoogle Scholar
  89. 89.
    Neuhaus W, Novalin S, Klimacek M, Splechtna B, Petzelbauer I, Szivak A, Kulbe KD (2006) Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk. Appl Biochem Biotechnol 134(1):1–14PubMedCrossRefGoogle Scholar
  90. 90.
    T-h Nguyen, Splechtna B, Steinböck M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D (2006) Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54(14):4989–4998CrossRefGoogle Scholar
  91. 91.
    Novalin S, Neuhaus W, Kulbe KD (2005) A new innovative process to produce lactose-reduced skim milk. J Biotechnol 119(2):212–218PubMedCrossRefGoogle Scholar
  92. 92.
    Ochoa J-C, Coufort C, Escudié R, Liné A, Paul E (2007) Influence of non-uniform distribution of shear stress on aerobic biofilms. Chem Eng Sci 62(14):3672–3684CrossRefGoogle Scholar
  93. 93.
    Osman A, Symeou S, Trisse V, Watson KA, Tzortzis G, Charalampopoulos D (2014) Synthesis of prebiotic galactooligosaccharides from lactose using bifidobacterial β-galactosidase (BbgIV) immobilised on DEAE-Cellulose, Q-Sepharose and amino-ethyl agarose. Biochem Eng J 82:188–199CrossRefGoogle Scholar
  94. 94.
    Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115(6):668–673PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114(4):418–423PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Palmer T, Bonner PL (2007) Enzymes: biochemistry, biotechnology and clinical chemistry, 2nd edn. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  97. 97.
    Park A-R, Oh D-K (2010) Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 85(5):1427–1435PubMedCrossRefGoogle Scholar
  98. 98.
    Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85(5):1279–1286PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Park H-Y, Kim H-J, Lee J-K, Kim D, Oh D-K (2008) Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus. World J Microbiol Biotechnol 24(8):1553–1558CrossRefGoogle Scholar
  100. 100.
    Park Y, Santi M, Pastore G (1979) Production and characterization of β-galactosidase from Aspergillus oryzae. J Food Sci 44(1):100–103CrossRefGoogle Scholar
  101. 101.
    Pessela BCC, Mateo C, Fuentes M, Vian A, Garcı́a JL, Carrascosa AV, Guisán JM, Fernández-Lafuente R (2003) The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzym Microb Technol 33(2):199–205CrossRefGoogle Scholar
  102. 102.
    Pisani FM, Rella R, Raia CA, Rozzo C, Nucci R, Gambacorta A, Rosa M, Rossi M (1990) Thermostable β‐galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur J Biochem 187(2):321–328PubMedCrossRefGoogle Scholar
  103. 103.
    Pocedičová K, Čurda L, Mišún D, Dryáková A, Diblíková L (2010) Preparation of galacto-oligosaccharides using membrane reactor. J Food Eng 99(4):479–484CrossRefGoogle Scholar
  104. 104.
    Portaccio M, Stellato S, Rossi S, Bencivenga U, Eldin MM, Gaeta F, Mita D (1998) Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enzym Microb Technol 23(1):101–106CrossRefGoogle Scholar
  105. 105.
    Ren H, Fei J, Shi X, Zhao T, Cheng H, Zhao N, Chen Y, Ying H (2015) Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification of galactosyl-oligosaccharides. Sep Purif Technol 144:70–79CrossRefGoogle Scholar
  106. 106.
    Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N (2010) Efficient bioconversion of lactose in milk and whey: Immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microbiol 161(7):515–525PubMedCrossRefGoogle Scholar
  107. 107.
    Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Ballesteros Olmo AO, Fernandez-Lobato M, Plou FJ (2011) Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: Comparative analysis of permeabilized cells versus soluble enzyme. J Agric Food Chem 59(19):10477–10484PubMedCrossRefGoogle Scholar
  108. 108.
    Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60(25):6391–6398PubMedCrossRefGoogle Scholar
  109. 109.
    Rodriguez-Fernandez M, Cardelle-Cobas A, Villamiel M, Banga JR (2011) Detailed kinetic model describing new oligosaccharides synthesis using different β-galactosidases. J Biotechnol 153(3):116–124PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rustom IY, Foda MI, Lopez-Leiva M (1998) Formation of oligosaccharides from whey UF-permeate by enzymatic hydrolysis—analysis of factors. Food Chem 62(2):141–147CrossRefGoogle Scholar
  111. 111.
    Sarney DB, Hale C, Frankel G, Vulfson EN (2000) A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration. Biotechnol Bioeng 69(4):461–467PubMedCrossRefGoogle Scholar
  112. 112.
    Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya PK, Barber AR, Bhattacharjee C (2011) Feasibility study of enzyme immobilization on polymeric membrane: a case study with enzymatically galacto-oligosaccharides production from lactose. J Membr Sci 378(1–2):471–478CrossRefGoogle Scholar
  113. 113.
    Sen P, Bhattacharjee C, Bhattacharya P (2016) Experimental studies and two-dimensional modelling of a packed bed bioreactor used for production of galacto-oligosaccharides (GOS) from milk whey. Bioprocess Biosyst Eng 39(3):361–380PubMedCrossRefGoogle Scholar
  114. 114.
    Sen P, Nath A, Bhattacharjee C, Chowdhury R, Bhattacharya P (2014) Process engineering studies of free and micro-encapsulated β-galactosidase in batch and packed bed bioreactors for production of galactooligosaccharides. Biochem Eng J 90:59–72CrossRefGoogle Scholar
  115. 115.
    Shin H-J, Yang J-W (1994) Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotech Lett 16(11):1157–1162CrossRefGoogle Scholar
  116. 116.
    Shukla H, Chaplin M (1993) Nocompetitive inhibition of β-galactosidase (A. oryzae) by galactose. Enzym Microb Technol 15(4):297–299CrossRefGoogle Scholar
  117. 117.
    Silva V, Prádanos P, Palacio L, Calvo J, Hernández A (2009) Relevance of hindrance factors and hydrodynamic pressure gradient in the modelization of the transport of neutral solutes across nanofiltration membranes. Chem Eng J 149(1):78–86CrossRefGoogle Scholar
  118. 118.
    Smithers GW (2008) Whey and whey proteins—From ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRefGoogle Scholar
  119. 119.
    Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S (2011) Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Appl Math Model 35(1):174–188CrossRefGoogle Scholar
  120. 120.
    Splechtna B, Nguyen T-H, Haltrich D (2007) Comparison between discontinuous and continuous lactose conversion processes for the production of prebiotic galacto-oligosaccharides using β-galactosidase from Lactobacillus reuteri. J Agric Food Chem 55(16):6772–6777PubMedCrossRefGoogle Scholar
  121. 121.
    Splechtna B, Nguyen T-H, Steinböck M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54(14):4999–5006PubMedCrossRefGoogle Scholar
  122. 122.
    Splechtna B, Nguyen T-H, Zehetner R, Lettner HP, Lorenz W, Haltrich D (2007) Process development for the production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnol J 2(4):480–485PubMedCrossRefGoogle Scholar
  123. 123.
    Swagerty DL, Walling AD, Klein RM (2002) Lactose intolerance. Am Fam Phys 65(9):1845–1860Google Scholar
  124. 124.
    Tanaka Y, Kagamiishi A, Kiuchi A, Horiuchi T (1975) Purification and properties of β-galactosidase from Aspergillus oryzae. J Biochem 77(1):241–247PubMedPubMedCentralGoogle Scholar
  125. 125.
    Toba T, Yokota A, Adachi S (1985) Oligosaccharide structures formed during the hydrolysis of lactose by Aspergillus oryzae β-galactosidase. Food Chem 16(2):147–162CrossRefGoogle Scholar
  126. 126.
    Todorova-Balvay D, Stoilova I, Gargova S, Vijayalakshmi MA (2006) An efficient two step purification and molecular characterization of β-galactosidases from Aspergillus oryzae. J Mol Recognit 19(4):299–304PubMedCrossRefGoogle Scholar
  127. 127.
    Torres P, Batista-Viera F (2012) Improved biocatalysts based on Bacillus circulans β-galactosidase immobilized onto epoxy-activated acrylic supports: applications in whey processing. J Mol Catal B Enzym 83:57–64CrossRefGoogle Scholar
  128. 128.
    Trusek-Holownia A, Noworyta A (2007) An integrated process: Ester synthesis in an enzymatic membrane reactor and water sorption. J Biotechnol 130(1):47–56PubMedCrossRefGoogle Scholar
  129. 129.
    Urrutia P, Br Rodriguez-Colinas, Fernandez-Arrojo L, Ballesteros AO, Wilson L, As Illanes, Plou FJ (2013) Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J Agric Food Chem 61(5):1081–1087CrossRefGoogle Scholar
  130. 130.
    Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50(3):188–194CrossRefGoogle Scholar
  131. 131.
    Vera C, Guerrero C, Illanes A (2011) Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohyd Res 346(6):745–752CrossRefGoogle Scholar
  132. 132.
    Vera C, Guerrero C, Illanes A, Conejeros R (2011) A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol Bioeng 108(10):2270–2279PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Verma ML, Barrow CJ, Kennedy J, Puri M (2012) Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis. Int J Biol Macromol 50(2):432–437PubMedCrossRefGoogle Scholar
  134. 134.
    Vetere A, Paoletti S (1998) Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta (BBA)-General Subjects 1380(2):223–231CrossRefGoogle Scholar
  135. 135.
    Warmerdam A, Paudel E, Jia W, Boom RM, Janssen AE (2013) Characterization of β-galactosidase isoforms from Bacillus circulans and their contribution to GOS production. Appl Biochem Biotechnol 170(2):340–358PubMedCrossRefGoogle Scholar
  136. 136.
    Warmerdam A, Zisopoulos FK, Boom RM, Janssen AE (2014) Kinetic characterization of galacto-oligosaccharide (GOS) synthesis by three commercially important β-galactosidases. Biotechnol Prog 30(1):38–47PubMedCrossRefGoogle Scholar
  137. 137.
    Weetall HH, Havewala NB, Pitcher WH, Detar CC, Vann WP, Yaverbaum S (1974) The preparation of immobilized lactase and its use in the enzymatic hydrolysis of acid whey. Biotechnol Bioeng 16(3):295–313CrossRefGoogle Scholar
  138. 138.
    Wierzbicki L, Kosikowski F (1973) Food syrups from acid whey treated with β-galactosidase of Aspergillus niger. J Dairy Sci 56(9):1182–1184CrossRefGoogle Scholar
  139. 139.
    Wijmans J, Baker R (1995) The solution-diffusion model: a review. J Membr Sci 107(1):1–21CrossRefGoogle Scholar
  140. 140.
    Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I (1995) Formation of oligosaccharides from lactose by Bacillus circulans beta-galactosidase. Biosci Biotechnol Biochem 59(6):1021–1026PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Yang ST, Okos MR (1989) A new graphical method for determining parameters in Michaelis–Menten-type kinetics for enzymatic lactose hydrolysis. Biotechnol Bioeng 34(6):763–773PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Zheng P, Yu H, Sun Z, Ni Y, Zhang W, Fan Y, Xu Y (2006) Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus. Biotechnol J 1(12):1464–1470CrossRefGoogle Scholar
  143. 143.
    Zhou QZ, Chen XD (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem Eng J 9(1):33–40CrossRefGoogle Scholar
  144. 144.
    Zhou QZ, Chen XD, Li X (2003) Kinetics of lactose hydrolysis by β-galactosidase of Kluyveromyces lactis immobilized on cotton fabric. Biotechnol Bioeng 81(2):127–133CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations