Skip to main content

Navigation in Laparoscopic and Robotic Urologic Surgery

  • Chapter
  • First Online:
Endourology Progress
  • 572 Accesses

Abstract

Augmented reality for surgical navigation is considered to visually recognize organs in the surgical field, for example, additional information not perceptible in reality is presented in real time on the endoscope screen by superimposing information not directly visible macroscopically or endoscopically. It is a surgical assistance technology aiming at improvement of the objective of surgery.

In surgery navigation, it is necessary to prepare an organ tracking system to acquire information on the spatial position of the target in real time similar to the spatial position tracking system, like a satellite GPS.

In future, application for hologram display using a laser light, commentary characters and sound up-dating the target condition in real time, a system informing of the safety and risk to the operator through color codes and alarm sound will be expected. Also, complementation and improvement of judgment ability will be possible by introducing Artificial Intelligence (AI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Edgcumbe P, Pratt P, Yang GZ, Nguan C, Rohling R. Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector. Med Image Anal. 2015;25(1):95–102.

    Article  Google Scholar 

  • Epp H, Kalin M, Miller D. PC software for artificial intelligence applications. Science. 1988;240(4853):824–30.

    Article  CAS  Google Scholar 

  • Hartl AD, Arth C, Grubert J, Schmalstieg D. Efficient verification of holograms using mobile augmented reality. IEEE Trans Vis Comput Graph. 2016;22(7):1843–51.

    Article  Google Scholar 

  • Isotani S, Shimoyama H, Yokota I, China T, Hisasue S, Ide H, Muto S, Yamaguchi R, Ukimura O, Horie S, et al. Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int J Urol. 2015;22(5):439–46. https://doi.org/10.1111/iju.12714. Epub 2015 Mar 17.

    Article  PubMed  Google Scholar 

  • Komai Y, Sugimoto M, Gotohda N, Matsubara N, Kobayashi T, Sakai Y, et al. Patient-specific 3-dimensional printed kidney designed for “4D” surgical navigation: a novel aid to facilitate minimally invasive off-clamp partial nephrectomy in complex tumor cases. Urology. 2016;91:226–33.

    Article  Google Scholar 

  • Lanchon C, Custillon G, Moreau-Gaudry A, Descotes JL, Long JA, Fiard G, Voros S. Augmented reality using transurethral ultrasound for laparoscopic radical prostatectomy: preclinical evaluation. J Urol. 2016;196(1):244–50.

    Article  Google Scholar 

  • Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.

    CAS  PubMed  Google Scholar 

  • Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg. 2013;8(4):663–75.

    Article  Google Scholar 

  • Nakamoto M, Ukimura O, Faber K, Gill IS. Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol. 2012;22:121–6.

    Article  Google Scholar 

  • Nakamoto M, Ukimura O, Gill IS, et al. Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. In: Dohi T, Sakura I, Liao H, editors. Medical imaging and augmented reality, (MIAR) 2008. New York: Springer; 2008. p. 359–66.

    Chapter  Google Scholar 

  • Okihara K, Kamoi K, Kanazawa M, Yamada T, Ukimura O, Kawauchi A, Miki T. Transrectal ultrasound navigation during minilaparotomy retropubic radical prostatectomy: impact on positive margin rates and prediction of earlier return to urinary continence. Int J Urol. 2009;16:820–5.

    Article  Google Scholar 

  • Schneider A, Pezold S, Saner A, Ebbing J, Wyler S, Rosenthal R, Cattin PC. Augmented reality assisted laparoscopic partial nephrectomy. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):357–64.

    PubMed  Google Scholar 

  • Shin T, Ukimura O, Gill IS. Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol. 2016;69(2):377–9.

    Article  Google Scholar 

  • Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol. 2011;25(12):1841–5.

    Article  Google Scholar 

  • Simpfendörfer T, Gasch C, Hatiboglu G, Müller M, Maier-Hein L, Hohenfellner M, Teber D. Intraoperative computed tomography imaging for navigated laparoscopic renal surgery: first clinical experience. J Endourol. 2016;30(10):1105–11.

    Article  Google Scholar 

  • Su LM, Vagvolgyi BP, Agarwal R, et al. Augmented reality during robot assisted laparoscopic partial nephrectomy: toward real-time three-dimensional-CT to stereoscopic video registration. Urology. 2009;73:896–900.

    Article  Google Scholar 

  • Teber D, Guven S, Simpfendörfer T, et al. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56:332–8.

    Article  Google Scholar 

  • Ukimura O, Gill IS. Imaging assisted endoscopic surgery—Cleveland Clinic experience. J Endourol. 2008;22(4):803–10.

    Article  Google Scholar 

  • Ukimura O, Gill IS. Augmented reality. In: Ukimura O, Gill IS, editors. Contemporary interventional ultrasonography in urology. New York: Springer; 2009a.

    Chapter  Google Scholar 

  • Ukimura O, Gill IS. Image-fusion, augmented reality and predictive surgical navigation. Urol Clin North Am. 2009b;36:115–23.

    Article  Google Scholar 

  • Ukimura O, Magi-Galluzzi C, Gill IS. Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol. 2006;175:1304–10.

    Article  Google Scholar 

  • Ukimura O, Nakamoto M, Gill IS. 3D reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia laparoscopic and robotic partial nephrectomy. Eur Urol. 2012;61:211–7.

    Article  Google Scholar 

Download references

Acknowledgement

Conflict of Interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiya Hongo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hongo, F., Ukimura, O. (2019). Navigation in Laparoscopic and Robotic Urologic Surgery. In: Chan, Ey., Matsuda, T. (eds) Endourology Progress. Springer, Singapore. https://doi.org/10.1007/978-981-13-3465-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3465-8_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3464-1

  • Online ISBN: 978-981-13-3465-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics