Skip to main content

Timing-of-Delivery Prediction Model to Visualize Delivery Trends for Pos Laju Malaysia by Machine Learning Techniques

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2018)

Abstract

The increasing trend in online shopping urges the need of continuous enhancing and improving user experience in many aspects and on-time delivery of goods is one of the key area. This paper explores the adoption of machine learning in predicting late delivery of goods on Malaysia national courier service named Poslaju. The prediction model also enables the visualization of the delivery trends for Poslaju Malaysia. Meanwhile, data extraction, transformation, experimental setup and performance comparison of various machine learning methods will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E-commerce Trends: 147 Stats Revealing How Modern Customers Shop in 2017. https://www.bigcommerce.com/blog/ecommerce-trends/. Accessed 1 Aug 2018

  2. Malaysia online shopping trends in 2017. http://news.ecinsider.my/2016/12/5-malaysia-online-shopping-trends-2017.html. Accessed 1 Aug 2018

  3. Compares Malaysia E-commerce Marketplaces. https://www.webshaper.com.my/compare-ecommerce-marketplaces/. Accessed 1 Aug 2018

  4. Pappas, I.O., Kourouthanassis, P.E., Giannakos, M.N., Lekakos, G.: The interplay of online shopping motivations and experiential factors on personalized e-commerce: a complexity theory approach. Telematics Inform. 34(5), 730–742 (2017)

    Article  Google Scholar 

  5. Cao, Y., Ajjan, H., Hong, P.: Post-purchase shipping and customer service experiences in online shopping and their impact on customer satisfaction: an empirical study with comparison. Asia Pac. J. Mark. Logist. 30, 400–412 (2018)

    Google Scholar 

  6. Kuoppamäki, S.M., Taipale, S., Wilska, T.A.: The use of mobile technology for online shopping and entertainment among older adults in Finland. Telematics Inform. 34(4), 110–117 (2017)

    Article  Google Scholar 

  7. Kawaf, F., Tagg, S.: The construction of online shopping experience: a repertory grid approach. Comput. Hum. Behav. 72(C), 222–232 (2017)

    Article  Google Scholar 

  8. Wang, M., Qu, H.: Review of the research on the impact of online shopping return policy on consumer behavior. J. Bus. Adm. Res. 6(2), 15 (2017)

    Google Scholar 

  9. Poslaju. http://www.poslaju.com.my/. Accessed 1 Aug 2018

  10. Extract, Transform and Load (ETL), Wikipedia. https://en.wikipedia.org/wiki/Extract,_transform,_load. Accessed 1 Aug 2018

  11. Yin, S., Kaynak, O.: Big data for modern industry: challenges and trends [point of view]. Proc. IEEE 103(2), 143–146 (2015)

    Article  Google Scholar 

  12. Requests: HTTP for Humans. http://docs.python-requests.org/en/master/. Accessed 1 Aug 2018

  13. Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/. Accessed 1 Aug 2018

  14. Google distance matrix API (web services). https://developers.google.com/maps/documentation/distance-matrix/intro. Accessed 1 Aug 2018

  15. Scikit-learn. http://scikit-learn.org/. Accessed 1 Aug 2018

  16. Occam’s Razor, Wikipedia. https://en.wikipedia.org/wiki/Occam%27s_razor. Accessed 1 Aug 2018

  17. Naïve Bayes Classifier, Wikipedia. https://en.wikipedia.org/wiki/Naive_Bayes_classifier. Accessed 1 Aug 2018

  18. Shinde, T.A., Prasad, J.R.: IoT based animal health monitoring with Naive Bayes classification. IJETT 1(2) (2017)

    Google Scholar 

  19. Chen, X., Zeng, G., Zhang, Q., Chen, L., Wang, Z.: Classification of medical consultation text using mobile agent system based on Naïve Bayes classifier. In: Long, K., Leung, V.C.M., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds.) 5GWN 2017. LNICST, vol. 211, pp. 371–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72823-0_35

    Chapter  Google Scholar 

  20. Wu, J., Zhang, G., Ren, Y., Zhang, X., Yang, Q.: Weighted local Naive Bayes link prediction. J. Inf. Process. Syst. 13(4), 914–927 (2017)

    Google Scholar 

  21. Krishnan, H., Elayidom, M.S., Santhanakrishnan, T.: Emotion detection of tweets using Naïve Bayes classifier. Emotion, Int. J. Eng. Technol. Sci. Res. 4(11) (2017)

    Google Scholar 

  22. Mane, D.S., Gite, B.B.: Brain tumor segmentation using fuzzy c-means and k-means clustering and its area calculation and disease prediction using Naive-Bayes algorithm. Brain, Int. J. Eng. Technol. Sci. Res. 6(11) (2017)

    Google Scholar 

  23. Sim, D.Y.Y., Teh, C.S., Ismail, A.I.: Improved boosted decision tree algorithms by adaptive apriori and post-pruning for predicting obstructive sleep apnea. Adv. Sci. Lett. 24(3), 1680–1684 (2018)

    Article  Google Scholar 

  24. Tayefi, M., et al.: hs-CRP is strongly associated with coronary heart disease (CHD): a data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 141(C), 105–109 (2017)

    Article  Google Scholar 

  25. Li, Y., Jiang, Z.L., Yao, L., Wang, X., Yiu, S.M., Huang, Z.: Outsourced privacy-preserving C4.5 decision tree algorithm over horizontally and vertically partitioned dataset among multiple parties. Clust. Comput., 1–13 (2017)

    Google Scholar 

  26. Yang, C.H., Wu, K.C., Chuang, L.Y., Chang, H.W.: Decision tree algorithm-generated single-nucleotide polymorphism barcodes of rbcL genes for 38 Brassicaceae species tagging. Evol. Bioinform. Online 14, 1176934318760856 (2018)

    Google Scholar 

  27. Zhao, H., Li, X.: A cost sensitive decision tree algorithm based on weighted class distribution with batch deleting attribute mechanism. Inf. Sci. 378(C), 303–316 (2017)

    Article  Google Scholar 

  28. Decision tree, Wikipedia. https://en.wikipedia.org/wiki/Decision_tree. Accessed 1 Aug 2018

  29. k-nearest neighbors algorithm, Wikipedia. https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm. Accessed 1 Aug 2018

  30. A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm. https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/. Accessed 1 Aug 2018

  31. Mohammed, M.A., et al.: Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution. J. Comput. Sci. 21, 232–240 (2017)

    Article  Google Scholar 

  32. Ha, D., Ahmed, U., Pyun, H., Lee, C.J., Baek, K.H., Han, C.: Multi-mode operation of principal component analysis with k-nearest neighbor algorithm to monitor compressors for liquefied natural gas mixed refrigerant processes. Comput. Chem. Eng. 106, 96–105 (2017)

    Article  Google Scholar 

  33. Chen, Y., Hao, Y.: A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Syst. Appl. 80(C), 340–355 (2017)

    Article  Google Scholar 

  34. García-Pedrajas, N., del Castillo, J.A.R., Cerruela-García, G.: A proposal for local k values for k-nearest neighbor rule. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 470–475 (2017)

    Article  Google Scholar 

  35. Bui, D.T., Nguyen, Q.P., Hoang, N.D., Klempe, H.: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14(1), 1–17 (2017)

    Article  Google Scholar 

  36. Rudin, C.: MIT, Spring (2012). https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec06.pdf. Accessed 1 Aug 2018

Download references

Acknowledgement

The authors would like to thank Universiti Sains Malaysia for supporting the publication of this paper through USM Research University Grant scheme 1001/PKOMP/814254.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jo Wei Quah , Chin Hai Ang , Regupathi Divakar , Rosnah Idrus , Nasuha Lee Abdullah or XinYing Chew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quah, J.W., Ang, C.H., Divakar, R., Idrus, R., Abdullah, N.L., Chew, X. (2019). Timing-of-Delivery Prediction Model to Visualize Delivery Trends for Pos Laju Malaysia by Machine Learning Techniques. In: Yap, B., Mohamed, A., Berry, M. (eds) Soft Computing in Data Science. SCDS 2018. Communications in Computer and Information Science, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-3441-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3441-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3440-5

  • Online ISBN: 978-981-13-3441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics