Skip to main content

Cyanobacteria: The Eco-Friendly Tool for the Treatment of Industrial Wastewaters

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

As the earth’s human population has increased, an enormous industrial growth has taken place throughout the world. Industry is the most flagrant abuser of water quality. It discharges polluted water having the pollution strength of at least double the sewage of all municipalities combined. Industrial effluents are the most important sources of toxic contaminants in any environment. Discharge of untreated industrial wastewater into aquatic bodies is posing a serious threat to the water resources. It should be treated before discharge into the natural water bodies. Recently, there has been increasing interest in cyanobacteria for the treatment of industrial wastewater (phycoremediation) since they possess many advantages over other microorganisms. Cyanobacteria are photoautotrophic in nature and have the ability to fix atmospheric nitrogen enabling them to be productive. In this way cyanobacteria are inexpensive; they can maintain their growth without the addition of nutrients. They are known to inhabit in various aquatic and highly polluted environment and acquired natural resistance against environmental pollutants. Cyanobacteria are efficient in the assimilation of organic matter and have high biodegradation, transformation, and biosorption capability of pollutants present in industrial wastewater. In addition, cyanobacteria have a great potential as a source of biofuels, bio-fertilizers, animal feed, polysaccharide production, etc. which makes them a viable and sustainable approach for the treatment of industrial wastewater and can be improved through genetic engineering technologies. This chapter represents the biodiversity of cyanobacteria and their potential application for the removal of heavy metals, dyes, crude oil, and pesticides from the wastewaters of different industries followed by a critical overview of their utilization, suitability, biomass production, and potential in bioremediation of industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed R, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55(1):29–37

    Article  CAS  Google Scholar 

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Apple Microbiol 106(1):1–12

    Article  CAS  Google Scholar 

  • Abu Al-Rub FA, El-Naas MH, Ashour I, Al-Marzouqi M (2006) Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 41:457–464

    Article  CAS  Google Scholar 

  • Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  • Ahuja P, Gupta R, Saxena RK (1999) Sorption and desorption of cobalt by Oscillatoria anguistissim. Curr Microbiol 39:49–52

    Article  CAS  Google Scholar 

  • Aksu Z (2002) Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Aksu Z, Ertugrul S, Donmez G (2009) Single and binary chromium(VI) and Remazol black B biosorption properties of Phormidium sp. J Hazard Mater 168:310–318

    Article  CAS  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347–1361

    Article  CAS  Google Scholar 

  • Al Hasan R, Sorkhoh N, Al Bader D, Radwan S (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41(5):615–619

    Article  Google Scholar 

  • Al-Hasan RH, Radwan SS (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. AME 23:113117

    Google Scholar 

  • Annadurai G, Babu SR, Mahesh KPO, Murugesan T (2000) Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174). Bioprocess Eng 22:493–501

    Article  CAS  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142:68–76

    Article  CAS  Google Scholar 

  • Babu GRY (1993) Degradation of inorganic cyanides by immobilized Pseudomonas putida cells. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol II, The Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  CAS  Google Scholar 

  • Bai RS, Abraham E (2003) Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. Bioresour Technol 87:17–26

    Article  Google Scholar 

  • Baran A, Baysal SH, Sukatar A (2005) Removal of Cr6+ from aqueous solution by some algae. J Environ Biol 26:329–333

    CAS  Google Scholar 

  • Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J-1 and by Anabaenopsis circularis PCCC 6720. Appl Environ Microbiol 53:2226–2230

    CAS  Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajor-caju into a Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetic analysis. Microchem J 72:63–76

    Article  CAS  Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60:2311–2315

    CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017a) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 75:259. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017c) Bioremediation: an eco sustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Blier R, Laliberte G, dela Noue J (1995) Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinum pusillum. Bioresour Technol 52(2):152–155

    Article  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Buvaneswari S, Muthukumaran M, Damodarkumar S, Murugesan S (2013) Isolation and identification of predominant bacteria to evaluate the bioremediation in sugar mill effluent. Int J Curr Sci 5:123–132

    Google Scholar 

  • Ca’ceres T, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646

    Article  CAS  Google Scholar 

  • Capon RJ, Dunlop RW, Ghisalberti EL, Jefferies PR (1983) Poly-3-hydroxyalkanoates from marine and freshwater cyanobacteria. Photochemistry 22(5):1181–1184

    Article  CAS  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89

    Article  CAS  Google Scholar 

  • Celekli A, Yavuzatmaca M, Bozkurt H (2009) Kinetics and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscule. Chem Eng J 152:139–145

    Article  CAS  Google Scholar 

  • Ceribasi IH, Yetis U (2001) Biosorption of Ni(II) and Pb(II) by Phanerochaete chrysosporium from a binary metal system-kinetics. Water SA 27:15–20

    CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658

    Article  CAS  Google Scholar 

  • Chen KC, Wu JY, Huang CC, Liang YM, Hwang SCJ (2003) Decolorization of azo dye using PVA-immobilized microorganisms. J Biotechnol 101:241–252

    Article  CAS  Google Scholar 

  • Cho D, Lee ST, Park SW, Chung AS (1994) Studies on the biosorption of heavy metals onto Chlorella vulgaris. J Environ Sci Health A 29(2):389–409

    Google Scholar 

  • Chong KH, Volesky B (1995) Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 47:451–460

    Article  CAS  Google Scholar 

  • Corder SL, Reeves M (1994) Biosorption of Ni in complex aqueous streams by cyanobacteria. Appl Biochem Biotech 45(46):847–859

    Article  Google Scholar 

  • Costa ACA, Leite SGF (1991) Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 13(8):555–562

    Article  Google Scholar 

  • Crist HR, Obeerholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217

    Article  CAS  Google Scholar 

  • Dahms HU, Xu Y, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  CAS  Google Scholar 

  • Darnall DW, Greene B, Hosea M, McPherson RA, Henzl M, Alexander MD (1986) Recovery of metals by immobilized algae. In: Thompson R (ed) Trace metal removal from aqueous solutions. Litho Ltd, Whitstable, pp 1–24

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    CAS  Google Scholar 

  • Divya M, Aanand S, Srinivasan A, Ahilan B (2015) Bioremediation – an eco-friendly tool for effluent treatment: a review. Int J Appl Res 1(12):530–537

    Google Scholar 

  • Dong X (2004) A comparative study of Cu (II) biosorption on Ca-alginate and immobilized live and inactivated Cladosporium sp. J Environ Biol 25(3):337–341

    CAS  Google Scholar 

  • Donmez GC, Aksu Z, Ozturk A, Kutsal TA (1999) Comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  CAS  Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ (2011) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol 10(7):1125–1132

    Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacterial. Microb Cell Factories 4(36):1–14

    Google Scholar 

  • Ertugrul S, Bakır M, Dönmez G (2008) Treatment of dye-rich wastewater by an immobilized thermophilic cyanobacterial strain: Phormidium sp. Ecol Eng 32(3):244–248

    Article  Google Scholar 

  • Fouill E, Mostajir B (2011) Complementary support for the new ecological concept of bacterial independence on contemporary phytoplankton production in oceanic waters. FEMS Microbiol Ecol 78:206–209

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei, and Penicillium chrysogenum): pH control, and cationic activation. FEMS Microbiol Rev 14:325–332

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opi Biotech 11:271–279

    Article  CAS  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gonzalez JH, Rodriguez O, Gamez G (1998) Phytofiltration of hazardous cadmium, chromium, lead, and zinc ions by biomass of Medicago sativa (Alfalfa). J Hazard Mater 57:29–39

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Gheewala SH, Annachatre AP (1997) Biodegradation of aniline. Water Sci Technol 36:53

    Article  CAS  Google Scholar 

  • Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of bacteria. Int J Syst Bact 28:l–6

    Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Graneli E, Carlsson P, Turner JT, Tester P, Bechemin C, Daw-son R, Funari E (1999) Effects of N:P:Si: ratios and zoo- plankton grazing on phytoplankton cornrnunltles in the northern Adriatic Sea. I. Nutrients, phytoplankton biomass, and polysaccharide production. Aquat Microb Ecol 18:37–54

    Article  Google Scholar 

  • Gross EM (2006) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22(3–4):313–339

    Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava K, Jain N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    Article  CAS  Google Scholar 

  • Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci Technol 24:220–234

    Article  CAS  Google Scholar 

  • Hashim MA, Chu KH (2001) Modelling the batch adsorption of copper by the microalga Chlorella vulgaris. In: Proceedings of the sixth world congress of chemical engineering. Melbourne pp 23–27

    Google Scholar 

  • Hassan BA, Venkateshwaran AA, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  Google Scholar 

  • Hatzios KK (1991) Biotransformation of herbicides in higher plants. In: Cessna AJ, Grover R (eds) Environmental chemistry of herbicides. CRC Press, Boca Raton

    Google Scholar 

  • Heitzer A, Sayler GS (1993) Monitoring efficacy of bioremediation. Trends Bio Technol 11:334–343

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechol Bioeng 41:819–825

    Article  CAS  Google Scholar 

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect in advances in biology and ecology of nitrogen fixation, Ohyama T.. (Rijeka: In Tech)

    Google Scholar 

  • Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987

    Article  CAS  Google Scholar 

  • Jeffers TH (1991) Biosorption of metal contaminants from acidic mine waters. In: Smith RW, Misra M (eds) Mineral bioprocessing. The Minerals, Metal and Materials Society, Warrendale

    Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • Kamika L, Momba MNB (2012) Comparing the tolerance limits of selected bacterial and protozoan species to vanadium in waste water systems. Water Air Soil Pollut 223(5):2525–2539

    Article  CAS  Google Scholar 

  • Kandah M, Abu Al-Rub FA, Al-Dabaybeh N (2003) The aqueous adsorption of copper and cadmium ions on sheep manure. Adsorpt Sci Technol 21:501–509

    Article  CAS  Google Scholar 

  • Kappesser S, Rude E, Kutzner HJ (1989) Microbiological studies of selected bacterial cultures for aerobic treatment of waste water. Proc Dechema Biotechnol Conf 3D:855–858

    Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  CAS  Google Scholar 

  • Kauffman BD (1970) Acute potassium dichromate poisoning in man. Am J Dis Child 119:374–379

    Article  Google Scholar 

  • Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol 99:6631–6634

    Article  CAS  Google Scholar 

  • Khataee AR, Dehghan G, Zarei M, Ebadi E, Pourhassan M (2011) Neural network modeling of biotreatment of tri-phenylmethane dye solution by a green microalga. Chem Eng Res Des 28:201–203

    Google Scholar 

  • Khelifi E, Bouallagui H, Touhami Y, Godon JJ, Hamidi M (2009) Bacterial monitoring by molecular tools of a continuous stirred reactor treating textile wastewater. Bioresour Technol 100:629–633

    Article  CAS  Google Scholar 

  • Kiff RJ, Little DR (1986) Biosorption of heavy metals by immobilized fungal biomass. In: Eccles HH, Hunt S (eds) Immobilization of ions by biosorption. Ellis Horwood, Chichester, pp 71–80

    Google Scholar 

  • Krishnaveni R, Pramiladevi Y, Ramgopal Rao S (2013) Bioremediation of steel industrial effluents using soil microorganisms. Int J Adv Biotechnol Res 4(1):51–56

    Google Scholar 

  • Kubiak WW, Wang J, Darnall D (1989) Anal Chem 61:468

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Zacharia J, Jarouliya U, Bhadauriya P, Prasad GBK, Bisen PS (2008) Spirulina in healthcare management. Curr Pharm Biotechnol 9:400–405

    Article  CAS  Google Scholar 

  • Kuritz T (1998) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85:186S–192S

    Article  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(1):234–238

    CAS  Google Scholar 

  • Lewis D, Kriff RJ (1988) The removal of heavy metals from aqueous effluents by immobilized fungal biomass. Environ Technol Lett 9:991–998

    Article  CAS  Google Scholar 

  • Liang S, Xueming L, Chen F, Chen Z (2004) Current microalgal health food R and D activities in China. Hydrobiologia 512:45–48

    Article  Google Scholar 

  • Lopez A, Lazaro N, Marques AM (1997) The interphase technique-a simple method of cell immobilization in gel-beads. J Microbiol Methods 30:231–234

    Article  CAS  Google Scholar 

  • Lozinsky VI, Plieva FM (1998) Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization: 3. Overview of recent research and developments. Enzym Microb Technol 23:227–242

    Article  CAS  Google Scholar 

  • Lu Y, Wilkins E (1995) Heavy metal removal by caustic-treated yeast immobilized in alginate. In: Hinchee R, Means JL, Burris RD (eds) Bioremediation of inorganics. Battelle Press, Columbus, pp 117–124

    Google Scholar 

  • Macaskie LE, Wates JM, Dean ACR (1987) Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid support: applicability to the treatment of liquid wastes containing heavy metal cations. Biotechnol Bioeng 30:66–73

    Article  CAS  Google Scholar 

  • Macaskie M, Dean ACR (1986) Cd accumulation by immobilized cells of Citrobacter sp. Biotechnol Bioeng 30:66

    Article  Google Scholar 

  • Mahmood R, Shariff R, Ali S, Hayyat MU (2013) Bioremediation of textile effluents by indigenous bacterial consortia and its effects on Zea mays L.CVC 1415. J Anim Plant Sci 23(4):1193–1199

    CAS  Google Scholar 

  • Matheickal JT, Iyengar L, Venkobachar C (1991) Sorption and desorption of Cu (II) by Ganoderma lucidum. Water Poll Res J Canada 26:187–200

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  • Matsunaga T, Sudo H, Takemasa H, Wachi Y (1996) Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica immobilized on light-diffusing optical fibres. Appl Microbiol Biotechnol 45:24–27

    Article  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contamin Toxicol 53:292–297

    Article  CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contamin Toxicol 39:251–256

    Article  CAS  Google Scholar 

  • Michel LJ (1986) Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors. Biotechnol Bioeng 28:1358–1365

    Article  CAS  Google Scholar 

  • Mittal S, Sengar RMS, Kaushik BD (1992) Uptake and toxicity of heavy metals to algae. Ind J Microbiol 31:1–26

    Google Scholar 

  • Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly𝛽-hydroxybutyrate. J Fermentat Bioeng 82(5):512–514

    Article  CAS  Google Scholar 

  • Mohamed ZA (2001) Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium. Water Res 35(18):4405–4409

    Article  CAS  Google Scholar 

  • Mohana S, Shrivastava S, Divehi J, Medawar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye direct black 22 by a novel bacterial consortium. Bioresour Technol 99:562–569

    Article  CAS  Google Scholar 

  • Mohapatra H, Gupta R (2005) Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresour Technol 96(12):1387–1398

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond. Bioresour Technol 102:3200–3205

    Article  CAS  Google Scholar 

  • Murray RGE (1968) Microbial structure as an aid to microbial classification and taxonomy. Spisy Prirodoved. Fak. Univ JE Purkyne Brne 43:245–252

    Google Scholar 

  • Narro M, Cerniglia C, Van Baalen C, Gibson D (1992) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58(4):1360–1363

    CAS  Google Scholar 

  • Oren A, Seckbach J (2001) Oxygenic photosynthetic microorganisms in extreme environments. Nova Hedwigia 123:13–31

    Google Scholar 

  • Ozer A, Akkaya G, Turabik M (2005) Biosorption of acid red 274 on Enteromorpha prolifera in a batch system. J Hazard Mater 126:119–127

    Article  CAS  Google Scholar 

  • Ozer A, Akkaya G, Turabik M (2006) The removal of acid red 274 from wastewater: combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes Pigments 71:83–89

    Article  CAS  Google Scholar 

  • Pala AL, Sponza DT (1996) Biological treatment of petrochemical wastewaters by Pseudomonas sp. added activated sludge culture. Environ Technol 17(7):673–685

    Article  CAS  Google Scholar 

  • Peng TY, Koon KW (1993) Biosorption of cadmium and copper by Saccharomyces cerevisiae. Microbial Util Renew Resour 8:494–504

    Google Scholar 

  • Pouliot Y, Buelna G, Racine C, dela Noue J (1989) Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biol Wastes 29(2):81–91

    Article  CAS  Google Scholar 

  • Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds (review). Appl Biochem Microbiol 46:119–134

    Article  CAS  Google Scholar 

  • Radwan S, Al-Hasan R (2002) Oil pollution and cyanobacteria. In: Whitton B, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht, pp 307–319

    Chapter  Google Scholar 

  • Radwan S, Al-Hasan R, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegrad 50(1):55–59

    Article  CAS  Google Scholar 

  • Raghukumar C, Vipparty V, David J, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  CAS  Google Scholar 

  • Ragini G, Bisen PS (2011) Bioremediation. In: Pimentel D (ed) Encyclopedia of biotechnology in agriculture and food. Taylor and Francis, New York

    Google Scholar 

  • Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ Int 30:57–63

    Article  CAS  Google Scholar 

  • Raven JA (1997) Phagotrophy in phototrophs. Limnol Oceanogr 42:198–205

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1983) Physiological responses of Rivularia atra to salinity: osmotic adjustment in hyposaline media. New Phytol 95:595–603

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Ross IS, Townsley CC (1986) In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. IRL Press, Chichester, pp 49–58

    Google Scholar 

  • Sa’nchez O, Diestra E, Esteve I, Mas J (2005) Molecular characterization of an oil-degrading cyanobacterial consortium. Microb Ecol 50(4):580–588

    Article  CAS  Google Scholar 

  • Sadettin S, Donmez G (2007) Simultaneous bioaccumulation of reactive dye and chromium(VI) by using thermophilic Phormidium sp. Enzym Microb Technol 41:175–180

    Article  CAS  Google Scholar 

  • Sag Y, Akcael B, Kutsal T (2001) Evaluation, interpretation and representation of three-metal biosorption equilibria using a fungal biosorbent. Process Biochem 37:35–50

    Article  CAS  Google Scholar 

  • Sakaguchi T, Nakajima A (1991) Accumulation of heavy metals such as uranium and thorium by microorganisms. In: Smith RW, Misra M (eds) Mineral bioprocessing. The Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  • Sandau E, Sandau P, Pulz O (1966) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  Google Scholar 

  • Sangitha PI, Aruna UK, Maggirwar RC (2012) Biodegradation of tannery effluent by using tannery effluent isolates. Int Multidiscip Res J 2(3):43–44

    Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: environmental considerations, field studies, sustainability and future prospects. Rev Environ Contam Toxicol. Springer Nature, Switzerland AG. https://doi.org/10.1007/398_2019_24

    Google Scholar 

  • Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol 33:221–225

    Article  CAS  Google Scholar 

  • Sharma M, Kaushik A, Somvir Bala K, Kamra A (2008) Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions. J Hazard Mat 157:315–318

    Article  CAS  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidiumvalderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–113

    Article  CAS  Google Scholar 

  • Shimabukuro RH (1985) Detoxification of herbicides. In: Duke SO (ed) Weed physiology, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Singh DP, Khattar JIS, Kaur M, Kaur G, Gupta M, Singh Y (2013) Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64. PLoS One 8(1):53445

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Nadda J (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18(8):1351–1359

    Article  CAS  Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK (1989) Copper uptake by free and immobilized cyanobacteria. FEMS Microbiol Lett 11:193–196

    Article  Google Scholar 

  • Slotton DG, Goldman CR, Frank A (1989) Commercially grown Spirulina found to contain low levels of mercury and lead. Nutr Rep Int 40:1165–1172

    CAS  Google Scholar 

  • Smith LA, Alleman BC, Copley-Graves L (1994) Biological treatment options. In: Means JL, Hinchee RE (eds) Emerging technology for bioremediation of metals. Lewis Publishers, London, pp 1–12

    Google Scholar 

  • Sokhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self-cleaning of the Gulf. Nature 359:109

    Article  Google Scholar 

  • Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243:217–224

    Article  CAS  Google Scholar 

  • Stal LJ, Heyer H, Jacobs G (1990) Occurrence and role of poly-hydroxy-alkanoate in the cyanobacterium Oscillatorialimosa in Novel Biodegradable Microbial Polymers. Springer, Dordrecht, pp 435–438

    Book  Google Scholar 

  • Stanier RY, Kumizawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

    CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(58):801–804

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS, Simpson CG (1998) Repeated removal of copper by alginate beads and the enhancement by microalgae. Biotechnol Tech 12:187–190

    Article  CAS  Google Scholar 

  • Trupti D, Eapen CS, Fulekar MH (2009) Characterization of industrial waste and identification of potential micro- organism degrading tributyl phosphate. J Toxicol Environ Health Sci 1(1):001–007

    Article  Google Scholar 

  • Verma SK, Singh SP (1995) Multiple metal resistance in the cyanobacterium Nostoc muscorum. Bull Environ Contam 54:614–619

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60:419–426

    Article  CAS  Google Scholar 

  • Vincenzini M, Sili C, de Philippis R, Ena A, Materassi R (1990) Occurrence of poly-𝛽-hydroxybutyrate in Spirulina sp. J Bacteriol 172(5):2791–2792

    Article  CAS  Google Scholar 

  • Weller MG (2000) Immunochromatographic techniques-a critical review. Fres J Anal Chem 366:635–645

    Article  CAS  Google Scholar 

  • Whitton BA (1969) The taxonomy of blue-green algae. Br Phycol J 4(l):121–123

    Article  Google Scholar 

  • Wide EW, Bennan JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  Google Scholar 

  • Wilde EW, Benmann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  Google Scholar 

  • Wilkinson SC, Goulding KH, Robinson PK (1990) Mercury removal by immobilized algae in a batch culture system. J Appl Phycol 2:223–229

    Article  Google Scholar 

  • Wong PK, Kwok SC (1992) Accumulation of nickel ion by immobilized cells of Enterobacter species. Biotechnol Lett 14(7):629–634

    Article  CAS  Google Scholar 

  • Wong PK, Wong YS, Tam NFY (2000) Nickel biosorption by two Chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate). Bioresour Technol 73:133–137

    Article  CAS  Google Scholar 

  • Yu Q, Kaewsarn P (1999) Binary adsorption of copper (II) and cadmium (II) from aqueous solutions by biomass of marine alga Durvillaea potatorum. Sep Sci Technol 34:1595–1605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mona, S., Kumar, V., Deepak, B., Kaushik, A. (2020). Cyanobacteria: The Eco-Friendly Tool for the Treatment of Industrial Wastewaters. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_16

Download citation

Publish with us

Policies and ethics