Skip to main content

Physics of Carbon Nanotubes and New Type of Carbon Network Materials: Electronic and Magnetic Properties

  • Chapter
  • First Online:
  • 873 Accesses

Abstract

In this chapter, using the density functional theory with the appropriate approximations for the exchange-correlation potential of interacting electrons, we explain the electronic structure of carbon nanotubes under the external electric field and the magnetic properties of two-dimensional (2D) sp2 C networks with topological defects. The capacitances of the CNTs with ellipsoidal and squashed cross sections implemented in the conducting channel in the field-effect transistor are different from that of the pristine CNT owing to the distribution of accumulated carriers depending on the CNT deformation and arrangements with respect to the electric field direction. The 2D networks induce the spin polarization and long-range magnetic spin ordering depending on their network topology, boundary condition, and topological defect implanted in the networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  2. S. Iijima, Nature (London) 354, 56 (1991)

    Article  CAS  Google Scholar 

  3. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  CAS  Google Scholar 

  4. R. Saito, M. Fujita, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  CAS  Google Scholar 

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature (London) 318, 162 (1985)

    Article  CAS  Google Scholar 

  6. W. Krätschmer, K. Fostiropoulous, D.R. Hoffman, Nature (London) 347, 354 (1990)

    Article  Google Scholar 

  7. P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Oxford University Press, Oxford, 1995)

    Google Scholar 

  8. S. Saito, A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991)

    Article  CAS  Google Scholar 

  9. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  CAS  Google Scholar 

  10. R. Martel, T. Schmidt, H.R. Shea, T. Hartel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  CAS  Google Scholar 

  11. Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Appl. Phys. Lett. 86, 073105 (2005)

    Article  Google Scholar 

  12. Y. Nosho, Y. Ohno, S. Kishimoto, T. Mizutani, Nanotechnology 17, 3412 (2006)

    Article  CAS  Google Scholar 

  13. D.-M. Sun, M.Y. Timmermans, Y. Tian, A.G. Nasibulin, E.I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Nat. Nanotechnol. 6, 156 (2011)

    Article  CAS  Google Scholar 

  14. U. Ishiyama, N.-T. Cuong, S. Okada, Jpn. J. Appl. Phys. 53, 115102 (2014)

    Article  Google Scholar 

  15. U. Ishiyama, N.-T. Cuong, S. Okada, Jpn. J. Appl. Phys. 54, 065101 (2015)

    Article  Google Scholar 

  16. M.S.C. Mazzoni, H. Chacham, Appl. Phys. Lett. 76, 1561 (2000)

    Article  CAS  Google Scholar 

  17. N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettel, Nature 377, 135 (1995)

    Article  CAS  Google Scholar 

  18. H. Mehrez, A. Svizhenko, M.P. Anantram, M. Elstner, T. Frauenheim, Phys. Rev. B 71, 155421 (2005)

    Article  Google Scholar 

  19. J.-Q. Lu, J. Wu, W. Duan, F. Liu, B.-F. Zhu, B.-L. Gu, Phys. Rev. Lett. 90, 156601 (2003)

    Article  Google Scholar 

  20. C. Gómez-Navarro, J.J. Sáenz, J. Gómez-Herrero, Phys. Rev. Lett. 96, 076803 (2006)

    Article  Google Scholar 

  21. K. Tada, K. Watanabe, Jpn. J. Appl. Phys. 39, 268 (2000)

    Article  CAS  Google Scholar 

  22. C. Kim, B. Kim, Phys. Rev. B 65, 165418 (2002)

    Article  Google Scholar 

  23. H. Zhang, Y. Miyamoto, Appl. Phys. Lett. 95, 053109 (2009)

    Article  Google Scholar 

  24. A. Yamanaka, S. Okada, Appl. Phys. Express 5, 095101 (2012)

    Article  Google Scholar 

  25. A. Yamanaka, S. Okada, Appl. Phys. Express 6, 045101 (2013)

    Article  Google Scholar 

  26. K. Uchida, S. Okada, Phys. Rev. B 76, 155436 (2007)

    Article  Google Scholar 

  27. J. Wu, W. Pisula, K. Müllen, Chem. Rev. 107, 718 (2007)

    Article  CAS  Google Scholar 

  28. K. Müllen, J.P. Rabe, Acc. Chem. Res. 41, 511 (2008)

    Article  Google Scholar 

  29. M. Fujihara, Y. Miyata, R. Kitaura, Y. Nishimura, C. Camacho, S. Irle, et al., J. Phys. Chem. C 116, 15141 (2012)

    Article  CAS  Google Scholar 

  30. H.E. Lim, Y. Miyata, M. Fujihara, S. Okada, Z. Liu, Arifin, et al., ACS Nano 9, 5034 (2015)

    Google Scholar 

  31. A.I. Cooper, Adv. Mater. 21, 1291 (2009)

    Article  CAS  Google Scholar 

  32. J. Gao, D. Jiang, Chem. Commun. 52, 1498 (2016)

    Article  CAS  Google Scholar 

  33. X. Liu, J. Tan, A. Wang, X. Zhang, M. Zhao, Phys. Chem. Chem. Phys. 16, 23286 (2014)

    Article  CAS  Google Scholar 

  34. C. Sánchez-Sánchez, S. Brüller, H. Sachdev, K. Müllen, M. Krieg, H.F. Bettinger, et al., ACS Nano 5, 9228 (2015)

    Article  Google Scholar 

  35. Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 3, 197 (2011)

    Article  CAS  Google Scholar 

  36. V. Boekelheide, C.E. Larrabee, J. Am. Chem. Soc. 72, 1245 (1950)

    Article  CAS  Google Scholar 

  37. D.H. Reid, Tetrahedron 3, 339 (1958)

    Article  CAS  Google Scholar 

  38. K. Nakasuji, M. Yamaguchi, I. Murata, K. Yamaguchi, T. Fueno, H. Ohya-Nishiguchi, et al., J. Am. Chem. Soc. 111, 9265 (1989)

    Article  CAS  Google Scholar 

  39. Z. Sun, J. Wu, J. Mater. Chem. 22, 4151 (2012)

    Article  CAS  Google Scholar 

  40. T. Kubo, Chem. Rec. 15, 218 (2015)

    Article  CAS  Google Scholar 

  41. T. Kubo, A. Shimizu, M. Uruichi, K. Yakushi, M. Nakano, D. Shiomi, et al., Org. Lett. 9, 81 (2007)

    Article  CAS  Google Scholar 

  42. Z. Mou, K. Uchida, T. Kubo, M. Kertesz, J. Am. Chem. Soc. 136, 18009 (2014)

    Article  CAS  Google Scholar 

  43. Z.-H. Cui, A. Gupta, H. Lischka, M. Kertesz, Phys. Chem. Chem. Phys. 17, 23963 (2015)

    Article  CAS  Google Scholar 

  44. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  45. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  46. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  CAS  Google Scholar 

  47. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  CAS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  49. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  CAS  Google Scholar 

  50. A. Hasegawa, S. Okada, Jpn. J. Appl. Phys. 55, 045101 (2016)

    Article  Google Scholar 

  51. M. Maruyama, S. Okada, Appl. Phys. Express 6, 095101 (2013)

    Article  Google Scholar 

  52. C. Su, H. Jiang, J. Feng, Phys. Rev. B 87, 075453 (2013)

    Article  Google Scholar 

  53. H. Kollmar, V. Staemmler, J. Am. Chem. Soc. 99, 3583 (1977)

    Article  CAS  Google Scholar 

  54. Y. Liu, G. Wang, Q.-S. Huang, L.-W. Guo, X. Chen, Phys. Rev. Lett. 108, 225505 (2012)

    Article  Google Scholar 

  55. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  CAS  Google Scholar 

  56. M. Fujita, K. Nakada, G. Dresselhaus, M. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  Google Scholar 

  57. S. Okada, A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001)

    Article  CAS  Google Scholar 

  58. S. Okada, M. Igami, K. Nakada, A. Oshiyama, Phys. Rev. B 62, 9896 (2000)

    Article  CAS  Google Scholar 

  59. M. Maruyama, N.T. Cuong, S. Okada, Carbon 109, 755 (2016)

    Article  CAS  Google Scholar 

  60. M. Maruyama, S. Okada, Carbon. https://doi.org/10.1016/j.carbon.2017.08.040

  61. K. Shiraishi, H. Tamura, H. Takayanagi, Appl. Phys. Lett. 78, 3702 (2001)

    Article  CAS  Google Scholar 

  62. H. Ishiia, T. Nakayama, J. Inoue, Surf. Sci. 514, 206 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okada, S., Maruyama, M. (2019). Physics of Carbon Nanotubes and New Type of Carbon Network Materials: Electronic and Magnetic Properties. In: Kubozono, Y. (eds) Physics and Chemistry of Carbon-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-3417-7_4

Download citation

Publish with us

Policies and ethics