Skip to main content

Parameter Identification for Granular Materials

  • Chapter
  • First Online:

Abstract

The chapter proposes an efficient optimization procedure for identifying parameters of easily crushable sand, which is then applied to the pile driving simulation. The Nelder–Mead Simplex genetic algorithm (NMGA) is first proposed and a newly enhanced elastoplastic breakage model is adopted. Then, the performance of NMGA is validated by identifying parameters from synthetic tests, and further verified by triaxial tests on limestone grains, based on which the necessary number of objective tests is also suggested. The role of grain breakage in bearing capacity of driven pile is also discussed. All comparisons demonstrate that the proposed NMGA with breakage-model-based parameter identification procedure is efficient and effective for easily crushable sand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coop M (1990) The mechanics of uncemented carbonate sands. Geotechnique 40(4):607–626

    Article  Google Scholar 

  2. Coop M, Sorensen K, Freitas TB, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54(3):157–163

    Article  Google Scholar 

  3. Lo KY, RoY M (1973) Response of particulate materials at high pressures. Soils Found 13(1):61–76

    Article  Google Scholar 

  4. Miao G, Airey D (2013) Breakage and ultimate states for a carbonate sand. Géotechnique 63(14):1221–1229

    Article  Google Scholar 

  5. Chen Q, Indraratna B, Carter JP, Nimbalkar S (2015) Isotropic–kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space. Can Geotech J 53(4):646–658

    Article  Google Scholar 

  6. Daouadji A, Hicher P-Y, Rahma A (2001) An elastoplastic model for granular materials taking into account grain breakage. Eur J Mech-A/Solids 20(1):113–137

    Article  Google Scholar 

  7. Einav I (2007) Breakage mechanics—part I: theory. J Mech Phys Solids 55(6):1274–1297

    Article  MathSciNet  Google Scholar 

  8. Hu W, Yin ZY, Dano C, Hicher PY (2011) A constitutive model for granular materials considering grain breakage. Sci China-Tech Sci 54(8):2188–2196

    Article  Google Scholar 

  9. Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41(6):1179–1192

    Article  Google Scholar 

  10. Yin Z-Y, Hicher P-Y, Dano C, Jin Y-F (2016) Modeling mechanical behavior of very coarse granular materials. J Eng Mech C4016006

    Google Scholar 

  11. Yao Y-P, Yamamoto H, Wang N-D (2008) Constitutive model considering sand crushing. Soils Found 48(4):603–608

    Article  Google Scholar 

  12. Cecconi M, Desimone A, Tamagnini C, Viggiani GMB (2002) A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil. Int J Numer Anal Meth Geomech 26(15):1531–1560

    Article  Google Scholar 

  13. Kong Y, Xu M, Song E (2017) An elastic-viscoplastic double-yield-surface model for coarse-grained soils considering particle breakage. Comput Geotech 85:59–70

    Google Scholar 

  14. Liu M, Gao Y (2016) Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity. Int J Geomech 17(5):04016113

    Google Scholar 

  15. Xiao Y, Liu H (2016) Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech 17(1):04016041

    Google Scholar 

  16. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Meth Geomech 40(8):1219–1240

    Article  Google Scholar 

  17. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotech 11(5):1131–1145

    Article  Google Scholar 

  18. Jin Y-F, Wu Z-X, Yin Z-Y, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech 12(6):1329–1351

    Article  Google Scholar 

  19. Jin Y-F, Yin Z-Y, Shen S-L, Zhang D-M (2017) A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Probl Sci Eng 25(9):1343–1366

    Article  MathSciNet  Google Scholar 

  20. Yin Z-Y, Jin Y-F, Shen JS, Hicher P-Y (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42(1):70–94

    Article  Google Scholar 

  21. Yin Z-Y, Jin Y-F, Shen S-L, Huang H-W (2017) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotech 12(4):849–867

    Article  Google Scholar 

  22. Jin Y-F, Yin Z-Y, Riou Y, Hicher P-Y (2017) Identifying creep and destructuration related soil parameters by optimization methods. KSCE J Civ Eng 21(4):1123–1134

    Article  Google Scholar 

  23. Richart F, Hall J, Woods R (1970) Vibrations of soils and foundations. International series in theoretical and applied mechanics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Yin Z-Y, Xu Q, Hicher P-Y (2013) A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523

    Article  Google Scholar 

  25. Yao Y, Hou W, Zhou A (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Article  Google Scholar 

  26. Yao Y, Lu D, Zhou A, Zou B (2004) Generalized non-linear strength theory and transformed stress space. Sci China Ser E Technol Sci 47(6):691–709

    Article  Google Scholar 

  27. Yao Y, Sun D, Luo T (2004) A critical state model for sands dependent on stress and density. Int J Numer Anal Meth Geomech 28(4):323–337

    Article  Google Scholar 

  28. Yao Y, Sun D, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Article  Google Scholar 

  29. Guyon É, Troadec J-P (1994) Du sac de billes au tas de sable: Odile Jacob

    Google Scholar 

  30. Durand N, Alliot J-M (1999) A combined Nelder-Mead simplex and genetic algorithm. In: Proceedings of the genetic and evolutionary computation conference GECCO1999, pp 1–7

    Google Scholar 

  31. Chelouah R, Siarry P (2003) Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. Eur J Oper Res 148(2):335–348

    Article  MathSciNet  Google Scholar 

  32. Gao F, Han L (2012) Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl 51(1):259–277

    Article  MathSciNet  Google Scholar 

  33. Liu Y-J, Li G, Yin Z-Y, Dano C, Hicher P-Y, Xia X-H et al (2014) Influence of grading on the undrained behavior of granular materials. CR Mec 342(2):85–95

    Article  Google Scholar 

  34. Jin YF, Yin ZY, Shen SL, Hicher PY (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech 40:1219–1240

    Google Scholar 

  35. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7(4):784–802

    MathSciNet  Google Scholar 

  36. Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Meth Geomech 36(5):597–618

    Article  Google Scholar 

  37. Bandini V, Coop MR (2011) The influence of particle breakage on the location of the critical state line of sands. Soils Found 51(4):591–600

    Article  Google Scholar 

  38. Jin Y-F, Yin Z-Y, Wu Z-X, Zhou W-H (2018) Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Eng 154:416–429

    Google Scholar 

  39. Jin Y-F, Yin Z-Y, Wu Z-X, Daouadji A (2018) Numerical modeling of pile penetration in silica sands considering the effect of grain breakage. Finite Elem Anal Des 144:15–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Tongji University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, ZY., Jin, YF. (2019). Parameter Identification for Granular Materials. In: Practice of Optimisation Theory in Geotechnical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3408-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3408-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3407-8

  • Online ISBN: 978-981-13-3408-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics