Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

We describe the challenges in the coming decade in global numerical weather prediction and in the tropics in particular. The ECMWF forecasting system is our benchmark. These challenges comprise four main areas of developments: making optimal use of the available observational data to obtain the best analysis, advanced ensemble methods to predict the uncertainties in the analyses and forecasts, model developments to better represent shallow and deep convection and associated circulations and finally necessary advances in computational efficiency called scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ecmwf.int/en/elibrary/17117-part-iv-physical-processes.

References

  • Arakawa, A., and C.-M. Wu. 2013. A unified representation of deep moist convection in numerical modelling of the atmosphere. Part I. Journal of the Atmospheric Sciences 70: 1977–1992.

    Article  Google Scholar 

  • Bauer, P., A. Thorpe, and G. Brunet. 2015. The quiet revolution of numerical weather prediction. Nature 525: 47–55.

    Article  Google Scholar 

  • Bauer, P., A.J. Geer, P. Lopez, and D. Salmond. 2010. Direct 4D-Var assimilation of all-sky radiances: Part I. Implementation. Quarterly Journal of the Royal Meteorological Society 136: 1868–1885.

    Article  Google Scholar 

  • Bechtold, P., M. Köhler, T. Jung, M. Leutbecher, M. Rodwell, F. Vitart, and G. Balsamo. 2008. Advances in predicting atmospheric variability with the ECMWF model, 2008: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society 134: 1337–1351.

    Article  Google Scholar 

  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann. 2014. Representing equilibrium and non-equilibrium convection in large-scale models. Journal of the Atmospheric Sciences 71: 734–753.

    Article  Google Scholar 

  • Benedict, J.J., and D.A. Randall. 2007. Observed characteristics of the MJO relative to maximum rainfall. Journal of the Atmospheric Sciences 64: 2332–2354.

    Article  Google Scholar 

  • Birch, C.E., D.J. Parker, J.H. Marsham, D. Copsey, and L. Garcia-Carrera. 2014. A seamless assessment of the role of convection in the water cycle of the West African monsoon. Journal Geophysical Research 119: 2890–2912.

    Google Scholar 

  • Blake, B.J., D.B. Parsons, K.R. Haghi, and S.G. Castleberry. 2017. The structure, evolution and dynamics of a nocturnal convective system simulated using the WRF-ARW model. Monthly Weather Review (early online release).

    Article  Google Scholar 

  • Forbes, R., A. Geer, K. Lonitz, and M. Ahlgrimm. 2016. Reducing systematic errors in cold-air outbreaks. ECMWF Newsletter 146: 17–22.

    Google Scholar 

  • Geer, A.J., P. Bauer, and C.W. O’Dell. 2009. A revised cloud overlap scheme for fast microwave radiative transfer in rain and cloud. Journal of Applied Meteorology and Climatology 48: 2257–2270.

    Article  Google Scholar 

  • Gerard, L. 2015. Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution. Monthly Weather Review 143: 4038–4063.

    Article  Google Scholar 

  • Grell, G.A., and S.R. Freitas. 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling. Atmospheric Chemistry and Physics 14: 5233–5250.

    Article  Google Scholar 

  • Hagos, S.M., C. Zhang, Z. Feng, C.D. Burleyson, C. De Mott, B. Kerns, J.J. Benedict, and M.N. Martini. 2016. The impact of the diurnal cycle on the propagation of Madden-Julian oscillation convection across the maritime continent. Journal of Advances in Modeling Earth Systems 8: 1552–1564. https://doi.org/10.1002/2016MS000725.

    Article  Google Scholar 

  • Herman, M.J., Ž. Fuchs, D. Raymond, and P. Bechtold. 2016. Convectively coupled Kelvin waves: From linear theory to global models. Journal of the Atmospheric Sciences 73: 407–428.

    Article  Google Scholar 

  • Hirons, L.C., P. Inness, F. Vitart, and P. Bechtold. 2013. Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quarterly Journal of the Royal Meteorological Society 139: 1427–1444. https://doi.org/10.1002/qj.2059.

    Article  Google Scholar 

  • Hu, Y., S. Rodier, K.-M. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset. 2010. Occurrence, liquid water content and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. Journal of Geophysical Research 115 (D4): D00H34.

    Google Scholar 

  • Kalmus, P., M. Lebsock, and J. Teixeira. 2014. Observational boundary layer energy and water budgets of the stratocumulus-to-cumulus transition. Journal of Climate 27: 9155–9170.

    Article  Google Scholar 

  • Kessler, E. 1969. On the distribution and continuity of water substance in atmospheric circulation. In Meteorological monographs, vol. 10. Boston, MA: American Meteorological Society.

    Chapter  Google Scholar 

  • Kwon, Y.C., and S.-Y. Hong. 2017. A mass flux parameterization scheme across gray-zone resolutions. Monthly Weather Review 145: 583–598.

    Article  Google Scholar 

  • Laing, A.G., S.B. Trier, and C.A. Davis. 2012. Numerical simulation of episodes of organized convection in tropical northern Africa. Monthly Weather Review 140: 2874–2885.

    Article  Google Scholar 

  • Leutbecher, M., and T. Palmer. 2008. Ensemble forecasting. Journal of Computational Physics 227 (7): 3515–3539.

    Article  Google Scholar 

  • Lewis, E.R. 2016. Marine ARM GPCI investigation of clouds (MAGIC) field campaign report. In DOE ARM climate research facility, ed. R. Stafford. DOE/SC-ARM-16-057.

    Google Scholar 

  • Li, J.-L.F., D.E. Walliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma. 2013. Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. Journal Geophysical Research 118: 8166–8184. https://doi.org/10.1002/jgrd.50378.

    Article  Google Scholar 

  • Loeb, N.G., B.A. Wielicki, D.R. Doelling, G.L. Smith, D.F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong. 2009. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. Journal of Climate 22: 748–766.

    Article  Google Scholar 

  • Ollinaho, P., S.-J. Lock, M. Leutbecher, P. Bechtold, A. Beljaars, A. Bozzo, R. Forbes, T. Haiden, R. Hogan, and I. Sandu. 2017. Towards process-level representation of model uncertainties: Stochastically perturbed parametrisations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorological Society 143: 408–422.

    Article  Google Scholar 

  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quarterly Journal of the Royal Meteorological Society 126: 1143–1170.

    Article  Google Scholar 

  • Schlemmer, L., P. Bechtold, I. Sandu, and M. Ahlgrimm. 2017. Uncertainties related to the representation of momentum transport in shallow convection. Journal of Advances in Modeling Earth Systems.

    Google Scholar 

  • Vitart, F., and F. Molteni. 2010. Simulation of the MJO and its teleconnections in the ECMWF forecast system. Quarterly Journal of the Royal Meteorological Society 136: 842–855.

    Article  Google Scholar 

  • Žagar, N. 2017. A global perspective of the limits of prediction skill of NWP models. Tellus A (early online release). https://doi.org/10.1080/16000870.2017.1317573.

    Article  Google Scholar 

  • Žagar, N., E. Andersson, and M. Fisher. 2005. Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quarterly Journal Royal Meteorological Society 131: 987–1011.

    Article  Google Scholar 

  • Zhang, G., K.H. Cook, and E.K. Vizy. 2016. The diurnal cycle of warm season rainfall over West Africa. Part II: Convection-permitting simulations. Journal of Climate 29: 8439–8454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bechtold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bechtold, P. (2019). Challenges in Tropical Numerical Weather Prediction at ECMWF. In: Randall, D., Srinivasan, J., Nanjundiah, R., Mukhopadhyay, . (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-13-3396-5_2

Download citation

Publish with us

Policies and ethics