An Extensive Review on Various Fundus Databases Use for Development of Computer-Aided Diabetic Retinopathy Screening Tool

  • Kalyan AcharjyaEmail author
  • Girija Shankar Sahoo
  • Sudhir Kr. Sharma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


Present days, the development of computer-aided diagnosis of diabetic retinopathy (DR) is an active research in the field of medical image processing. The true quality performance of medical image understanding classifier depends on tested fundus database by some means. Therefore, a researcher must have the knowledge of all types of database available to facilitate the development of DR screening tool and this paper is intended to provide an idea of various fundus databases. Trends are seen that a number of researchers use different databases to evaluate their code, in that way the purpose to attain universally accepted diabetic retinopathy screening tool will not be achieved at earliest. However, there are no unique databases available to evaluate the program for all types of DR symptoms on fundus image. In this paper, present the detail comparative discussion on various publicly available databases of fundus images, which established to facilitate to do research work for the development of computer-aided diabetic retinopathy screening tool (CAD-DRST). The selection of test database or multiple databases depends on the researcher and the quality of the database; along with test results signify the acceptability level of the proposed algorithms. Besides that, through this paper, we urged to all scientific communities to establish a common database for the finest development of CAD-DRST.


Diabetic retinopathy Fundus database Retinopathy screening tool DR symptoms 


  1. 1.
    Wild, S., Roglic, G., Green, A.: Global Prevalence of Diabetes: Estimates for the Year 2000 and Projection for 2030, Diabetes Care, pp. 1047–1053 (2004)Google Scholar
  2. 2.
    Amin, J., Sharif, M., Yasmin, M.: A review on recent developments for detection of diabetic retinopathy. Scientficavol (Hindawi Publishing Corporation) (2016). Article ID: 6838976Google Scholar
  3. 3.
    World Health Organization (WHO): Action Plan for the Prevention of Avoidable Blindness and Visual Impairment 2009–2013 (2010)Google Scholar
  4. 4.
    International Diabetes Federation.
  5. 5.
    Agarwal, S., Acharjya, K., Sharma, S.K., Pandita, S.: Automatic computer aided diagnosis for early diabetic retinopathy detection and monitoring: a comprehensive review. In: International Conference on Green Engineering and Technologies (IC-GET) IEEE XploreGoogle Scholar
  6. 6.
    Osareh, A., Shadgar, B., Markham, R.: A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Technol. Biomed. 13(4) (2009)CrossRefGoogle Scholar
  7. 7.
    Jaya, T., Dheeba, N., Singh, A.: Detection of hard exudates in colour fundus images using fuzzy support vector machine-based expert system. J. Digit. Imag. Soc. Imag. Inform Med. (2015)Google Scholar
  8. 8.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–210 (2000)CrossRefGoogle Scholar
  9. 9.
    Zheng, Y., Hijazi, M.H.A., Coenen, F.: Automated disease or no disease grading of age-related macular degeneration by an image mining approach. Invest. Ophthalmol. Vis. Sci. (2012)Google Scholar
  10. 10.
    Farnell, D.J.J., Hatfield, F.N., Knox, P., Reakes, M., Spencer, S., Parry, D.: Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J. Franklin Inst. (2008)Google Scholar
  11. 11.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23, 501–509 (2014)CrossRefGoogle Scholar
  12. 12.
    Lowell, J., Hunter, A., Steel, D., Ryder, B., Fletcher, E.: Optic nerve head segmentation. IEEE Trans. Med. Imag. 23(2) (2004)CrossRefGoogle Scholar
  13. 13.
    Decenciere, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., Gain, P., Ordonez, R., Massin, P., Erginay, A., Charton, B., Claude Klein, J.: Feedback on a publicly distributed database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)CrossRefGoogle Scholar
  14. 14.
    Forsstrom, J., Kalesnykiene, V., Kuivalainen, M., Sorri, I., Uusitalo, H., Kamarainen, J.: Automated pattern recognition for the detection of diabetic changes in digital fundus images. In: Abstract for ARVO 2005 Annual Meeting Fort Lauderdale, Florida (2005)Google Scholar
  15. 15.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Uusitalo, H., Kalviainen, H., Pietila, J.: DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms. Technical reportGoogle Scholar
  16. 16.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kilviinen, H., Pietili, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical reportGoogle Scholar
  17. 17.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kalviainen, H., Pietila, J.: The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the British Machine Vision Conference BMVA Press, pp. 15.1–15.10 (2007)Google Scholar
  18. 18.
    Carmona, E.J., Rincon, M., Garcia-Feijoo, J., Martinez-de-la-Casa, J.M.: Identification of the optic nerve head with genetic algorithms. J. Artif. Intell. Med. 43(3), 243–259 (2008)CrossRefGoogle Scholar
  19. 19.
    Al-Diri, B., Hunter, A., Steel, D., Habib, M., Hudaib, T., Berry, S.: Review-a reference data set for retinal vessel profiles. In: 30th Annual International IEEE EMBS Conference Vancouver British Columbia, Canada, 20–24 Aug 2008Google Scholar
  20. 20.
    Pavle, P., Sven, L., Zoran, V., Goran, B., Marko, S., Tomislav, P., Lana, D., Maja, M.R., Nikolina, B., Raseljka, T.: Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research. In: Proceedings of 8th International Symposium on Image and Signal Processing and Analysis-ISPA Trieste, pp. 704–709 (2013)Google Scholar
  21. 21.
    Attila, B., Ridiger, B., Andreas, M., Joachim, H., Georg, M.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imag. 2013 (2013)Google Scholar
  22. 22.
    Decenciere, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., Marcotegui, B., Quellec, G., Lamard, M., Danno, R., Elie, D., Massin, P., Viktor, Z., Erginay, A., Lay, B., Chabouis, A.: TeleOphta-machine learning and image processing methods for teleophthalmology. IRBM, Elsevier Masson SAS IRBM 34, 196–203 (2013)Google Scholar
  23. 23.
    Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imag. 29(6), 1321–1330 (2010)CrossRefGoogle Scholar
  24. 24.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). Scholar
  25. 25.
    Kaur, J., Mittal, D.: Segmentation and measurement of exudates in fundus images of the retina for detection of retinal disease. J. Biomed. Eng. Med. Imag. 2(1) (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kalyan Acharjya
    • 1
    Email author
  • Girija Shankar Sahoo
    • 1
  • Sudhir Kr. Sharma
    • 1
  1. 1.Jaipur National UniversityJaipurIndia

Personalised recommendations