Urban Bus Arrival Time Prediction Using Linear Regression and Kalman Filter—A Comparison

  • Neeraj RamkumarEmail author
  • Archana Chaudhari
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


The study aims to use two statistical processes to predict the arrival time of a bus in the highly dynamic traffic conditions of Mumbai. The paper provides a comparison of regression and Kalman filter as an attempt to model the travel time for a bus. GPS data collected from the bus during field study was used for training and validation of both the models. The Kalman filter model is leveraged to provide real-time information and is used to exploit the correlation between the test bus and previous buses plying along the same route and is shown to perform better among the two for forecasting travel time.


Travel time prediction Kalman filter Regression 


  1. 1.
  2. 2.
    Balasubramaniam, P., Rao, K.R.: An adaptive long-term bus arrival time prediction model with cyclic variations. J. Public Transp. 18(1) (2015)Google Scholar
  3. 3.
    Vanajakshi, L., Subramanian, S.C., Sivanandan, R.: Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses. IET Intell. Transp. Syst. 3(1), 1–9 (2008)CrossRefGoogle Scholar
  4. 4.
    Lin, W.H., Zeng, J.: Experimental study of real-time bus arrival time prediction with GPS data. Transp. Res. Rec. 1666, 101–109 (1999)CrossRefGoogle Scholar
  5. 5.
    Weigang, L., Koendjbiharie, W., Juca, R.C., Yamashita, Y., Maciver, A.: Algorithms for estimating bus arrival times using GPS data. In: The IEEE 5th International Conference on Intelligent Transportation Systems, pp. 868–873 (2002)Google Scholar
  6. 6.
    Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., Zhao, M.: Predicting bus arrival time on the basis of global positioning system data. In: Transportation Research Record. National Academy, Washington, DC (2007)CrossRefGoogle Scholar
  7. 7.
    Altinkaya, M., Zontul, M.: Urban bus arrival time prediction: a review of computational models. Int. J. Recent Tech. Eng. 2(4) (2013)Google Scholar
  8. 8.
    Patnaik, J., Chein, S., Bladihas, A.: Estimation of bus arrival times using APC data. J. Public Transp. 7(1), 1–20 (2004)CrossRefGoogle Scholar
  9. 9.
    Abdelfattah, A.M., Khan, A.M.: Models for predicting bus delays. Transp. Res. Rec. 1623, 8–15 (1999)CrossRefGoogle Scholar
  10. 10.
    Jeong, R., Rilett, L.: The prediction of bus arrival time using AVL data. In: 83rd Annual General Meeting, Transportation Research Board, National Research Council, Washington D.C., USA (2004)Google Scholar
  11. 11.
    Ramakrishna, Y., Ramakrishna, P., Sivanandan, R.: Bus travel time prediction using GPS data. In: Proceedings Map India (2006)Google Scholar
  12. 12.
    Chien, S.I.J., Ding, W., Wei, C.: Dynamic bus arrival time prediction with artificial neural networks. J. Transp. Eng. 128(5), 429–438 (2002)CrossRefGoogle Scholar
  13. 13.
    Chen, M., Chien, S.: Dynamic freeway travel-time prediction with probe vehicle data, link based versus path based. Transp. Res. Rec. 157–161 (2001)CrossRefGoogle Scholar
  14. 14.
    Bin, Y., Zhongzhen, Y., Baozhen, Y.: Bus arrival time prediction using support vector machines. J. Intell. Transp. Syst. 10(4), 151–158 (2006)CrossRefGoogle Scholar
  15. 15.
    Chien, S.I.J., Kuchipudi, C.M.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)CrossRefGoogle Scholar
  16. 16.
    Yang, J.-S.: Travel time prediction using the GPS test vehicle and Kalman filtering techniques. In: American Control Conference, Portland, Oregon, USA (2005)Google Scholar
  17. 17.
    Vanajakshi, L.: Development of a real time bus arrival time prediction system under Indian traffic conditions.
  18. 18.
    Draper, N.R., Smith, H., Pownell, E.: Applied Regression Analysis, vol. 3. Wiley, New York (1966)Google Scholar
  19. 19.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  20. 20.
    Brooks, P.: Metrics for IT Service Management. Van Haren Publishing, Netherlands (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Electronics and Telecommunication DepartmentDwarkadas J. Sanghvi College of EngineeringMumbaiIndia

Personalised recommendations