Fleet Management and Vehicle Routing in Real Time Using Parallel Computing Algorithms

  • A. MummoorthyEmail author
  • R. Mohanasundaram
  • Shubham Saraff
  • R. Arun
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


Algorithms which take uncertainty into account make better systems for fleet management and lead to greater efficiency. These algorithms are faster and can manage real-time traffic and even compute the location and status of vehicles with miscellaneous requests from users. Parallel computing technologies enable us to implement fuzzy-based algorithms which route the traffic in a much more efficient mechanism. This also improves the overall system of user request management by using meta-heuristics.


Parallel computing Fleet management Fuzzy logic Meta-heuristics Routing 


  1. 1.
    Ichoua, S., Gendreau, M., Potvin, J.-Y.: Diversion issues in real-time vehicle dispatching. Transp. Sci. 34, 426–435 (2000)CrossRefGoogle Scholar
  2. 2.
    Caricato, P., Ghiani, G., Grieco, A., Guerriero, E.: Parallel tabu search for a vehicle rounting problem under track contention. Parallel Comput. (forthcoming)Google Scholar
  3. 3.
    Miller-Hooks, Mahmassani, H.: Least possible time paths in stochastic, time-varying transportation networks. Comput. Oper. Res. 25, 1107–1125 (1998)CrossRefGoogle Scholar
  4. 4.
    Gao, Chabini, I.: Best routing policy problem in stochastic time-dependent networks. Transp. Res. Rec. 1783, 188–196 (2002)CrossRefGoogle Scholar
  5. 5.
    Marianov, V., ReVelle, C.S.: Siting emergency services. In: Drezner, Z. (ed.) Facility location, pp. 199–223. Springer, New York (1995)CrossRefGoogle Scholar
  6. 6.
    Mohanasundaram, R., Periasamy, P.S.: A meta heuristic algorithm for optimal data storage position in wireless sensor networks. Pak. J. Biotechnol. 463–468 (2016)Google Scholar
  7. 7.
    Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modelling, pp. 245–281. Kluwer, Boston (1998)CrossRefGoogle Scholar
  8. 8.
    Mohanasundaram, R., Periasamy, P.S.: Swarm based optimal data storage position using enhanced bat algorithm in wireless sensor networks. Int. J. Appl. Eng. Res. 10(2), 4311–4328 (2015). ISSN 0973-4562Google Scholar
  9. 9.
    Repede, J.F., Bernardo, J.J.: Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur. J. Oper. Res. 75, 567–581 (1994)CrossRefGoogle Scholar
  10. 10.
    ReVelle, C.S.: Review, extension and prediction in emergency services siting models. Eur. J. Oper. Res. 40, 58–69 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mohanasundaram, R., Periasamy, P.S.: Clustering based optimal data storage strategy using hybrid swarm intelligence in WSN. Wirel. Pers. Commun. (2015) (Springer)Google Scholar
  12. 12.
    Brotcorne, L., Laporte, G., Semet, F.: Ambulance location and relocation models. Eur. J. Oper. Res. 147(3), 451–463 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Malandraki, C., Daskin, M.S.: Time dependent vehicle routing problems: formulations, properties, and heuristics algorithms. Transp. Sci. 26, 185–200 (1992)CrossRefGoogle Scholar
  14. 14.
    Mohanasundaram, R., Periasamy, P.S.: Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks. Sci. World J. (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. Mummoorthy
    • 1
    Email author
  • R. Mohanasundaram
    • 2
  • Shubham Saraff
    • 2
  • R. Arun
    • 3
  1. 1.Malla Reddy College of Engineering and TechnologyHyderabadIndia
  2. 2.School of Computer Science and EngineeringVIT UniversityVelloreIndia
  3. 3.Builders Engineering CollegeKangayamIndia

Personalised recommendations