Soft-Computing Techniques for Voltage Regulation of Grid-Tied Novel PV Inverter at Different Case Scenarios

  • T. Lova LakshmiEmail author
  • M. Gopichand Naik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


In this paper, the voltage regulation of large-scale grid-tied photovoltaic power plant (GTPVPP) operating during nonlinear PV generation has been discussed. This research proposes the comparative voltage regulation of a novel multilevel inverter with soft-computing techniques such as fuzzy and adaptive neuro-fuzzy inference system (ANFIS)-based control for regulating the voltage of GTPVPP. Due to the interruptible PV generation and at worst-case scenarios, the proposed control scheme is useful to satisfy the load demand by grid integration. In this comparison, the ANFIS-based control scheme improves the dynamic performance, reduces the THD, and improves the efficiency. The fuzzy and proposed ANFIS-based control schemes are developed in MATLAB/Simulink environment and are compared at worst-case solar generation, rapid change of loads, and grid faults.


Solar PV generation DC–DC converter Resonant switched-capacitor converter (RSCC) Multilevel inverter Soft-computing techniques 


  1. 1.
    Sun, Y., Ma, X., Xu, J., Bao, Y., Liao, S.: Efficient Utilization of Wind Power: Long-Distance Transmission or Local Consumption. Higher Education Press and Springer-Verlag, Berlin, Heidelberg (2017)CrossRefGoogle Scholar
  2. 2.
    Pertl, M., Weckesser, T., Rezkalla, M., Marinelli, M.: Transient Stability Improvement: A Review and Comparison of Conventional and Renewable-Based Techniques for Preventive and Emergency Control. Springer-Verlag, GmbH Germany (2017)CrossRefGoogle Scholar
  3. 3.
    Etemadi, A.H., Davison, E.J., Iravani, R.: A decentralized robust control strategy for multi-DER microgrids—part II: performance evaluation. IEEE Trans. Power Del. 27(4) (2012)CrossRefGoogle Scholar
  4. 4.
    Rogers, B., Taylor, J., Mimnagh, T., Tsay, C.: Studies on the time and locational value of DER. CIRED Open Access Proc. J. 2017(1), 2015–2018 (2017)CrossRefGoogle Scholar
  5. 5.
    Mirhosseini, M., Pou, J., Karanayil, B., Agelidis, V.G.: Resonant versus conventional controllers in grid-connected photovoltaic power plants under unbalanced grid voltages. IEEE Trans. Sustain. Energy 7(3) (2016)CrossRefGoogle Scholar
  6. 6.
    Li, H. Shi, K.L., McLaren, P.G.: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans. Ind. Appl. 41(6), 1548–1556 (2005)CrossRefGoogle Scholar
  7. 7.
    García, P., García, C.A., Fernández, L.M., Llorens, F., Jurado, F.: ANFIS-based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE Trans. Ind. Informa. 10(2) (2014)CrossRefGoogle Scholar
  8. 8.
    Jang, J.-S., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs, NJ, USA (1997)Google Scholar
  9. 9.
    Hu, J., He, Y.: Multi-frequency proportional-resonant (MFPR) current controller for PWM VSC under unbalanced supply conditions. J. Zhejiang Univ. Sci. A 8(10), 1527–1531 (2007)CrossRefGoogle Scholar
  10. 10.
    Hu, J., Hr, Y.: Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions. IEEE Trans. Energy Convers. 23(3), 903–913 (2008)CrossRefGoogle Scholar
  11. 11.
    Mirhosseini, M., Agelidis, V.G.: Performance of Large-Scale Grid-Connected Photovoltaic System under Various Fault Conditions. IEEE (2013)Google Scholar
  12. 12.
    Sano, K., Fujita, H.: Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters. IEEE Trans. Ind. Appl. 44(6), 1768–1776 (2008)CrossRefGoogle Scholar
  13. 13.
    Suroso, S., Noguchi, T.: New generalized multilevel current-source PWM inverter with no-isolated switching devices. In: Proceedings of the IEEE International Conference Power Electronics Drives Systems (PEDS), pp. 314–319 (2009)Google Scholar
  14. 14.
    Altin, N., Sefa, I.: DSPACE based adaptive neuro-fuzzy controller of grid interactive inverter. Energ. Convers. Manag. 56, 130–139 (2012)CrossRefGoogle Scholar
  15. 15.
    Basarir, H., Elchalakani, M., Karrech, A.: The Prediction of Ultimate Pure Bending Moment of Concrete-Filled Steel Tubes by Adaptive Neuro-Fuzzy Inference System (ANFIS). Springer, Australia (2017)Google Scholar
  16. 16.
    Heddam, S.: Modeling Hourly Dissolved Oxygen Concentration (DO) Using Two Different Adaptive Neuro-Fuzzy Inference Systems (ANFIS): A Comparative Study. Springer Science, Business Media Dordrecht (2013)CrossRefGoogle Scholar
  17. 17.
    Dubey, S.K., Jasra1, B.: Reliability Assessment of Component Based Software Systems Using Fuzzy and ANFIS Techniques. Springer, India (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Andhra UniversityVisakhapatnamIndia

Personalised recommendations