A Graphical Computational Tool for Computerized Ventricular Extraction in Magnetic Resonance Cardiac Imaging

  • Ayush GoyalEmail author
  • Disha Bathla
  • Sai Durga Prasad Matla Leela Venkata Manikanta
  • Gahangir Hossain
  • Rajab Challoo
  • Ashwani K. Dubey
  • Anupama Bhan
  • Priya Ranjan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


In this research, a graphical computational tool for segmenting the ventricles (both left ventricle and right ventricle) using images that are taken from cardiac MRI has been developed and tested. The purpose of this research is to develop a tool to aid cardiologists in the extraction of clinically relevant medical information such as ejection fraction and stroke volume from the patient’s cardiac MRI images. The tool has been developed to allow the user to load any cardiac MRI image and performs segmentation upon the click of a button. Moreover, along with all other above-mentioned features, it will provide a cardiac disease prediction framework for extracting clinically relevant medical information and clinical parameters from the patient’s cardiac MRI images and for assisting cardiologists and cardiac researchers for creating patient-specific personalized cardiac treatment plans based on the extracted cardiac parameters such as left ventricular ejection fraction and stroke volume.


Segmentation Cardiac MRI Left ventricle Right ventricle 


  1. 1.
    Goyal, A., Lee, J., Lamata, P., van den Wijngaard, J., van Horssen, P., Spaan, J., Smith, N.P.: Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Trans. Med. Imaging 32(1), 56–72 (2013)CrossRefGoogle Scholar
  2. 2.
    Sikarwar, B.S., Roy, M.K., Ranjan, P., Goyal, A.: Automatic disease screening method using image processing for dried blood microfluidic drop stain pattern recognition. J. Med. Eng. Technol. 40(5), 245–254 (2016)CrossRefGoogle Scholar
  3. 3.
    Sikarwar, B.S., Roy, M.K., Ranjan, P., Goyal, A.: Imaging-based method for precursors of impending disease from blood traces. In: Advances in Intelligent Systems and Computing, vol. 468, pp. 411–424. Springer (2016)Google Scholar
  4. 4.
    Sikarwar, B.S., Roy, M.K., Ranjan, P., Goyal, A.: Automatic pattern recognition for detection of disease from blood drop stain obtained with microfluidic device. In: Advances in Intelligent Systems and Computing, vol. 425, pp. 655–667. Springer (2015)Google Scholar
  5. 5.
    Chhabra, M., Goyal, A.: Accurate and robust iris recognition using modified classical hough transform. In: Lecture Notes in Networks and Systems, vol. 10, pp. 493–507. Springer (2017)Google Scholar
  6. 6.
    Goyal, A., Ray, V.: Belongingness clustering and region labeling based pixel classification for automatic left ventricle segmentation in cardiac MRI images. Transl. Biomed. 6(3) (2015)Google Scholar
  7. 7.
    Goyal, A., Roy, M., Gupta, P., Dutta, M.K., Singh, S., Garg, V.: Automatic detection of mycobacterium tuberculosis in stained sputum and urine smear images. Arch. Clin. Microbiol. 6(3) (2015)Google Scholar
  8. 8.
    Goyal, A., van den Wijngaard, J., van Horssen, P., Grau, V., Spaan, J., Smith, N.: Intramural spatial variation of optical tissue properties measured with fluorescence microsphere images of porcine cardiac tissue. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1408–1411 (2009)Google Scholar
  9. 9.
    Duta, M., Thiyagalingam, J., Trefethen, A., Goyal, A., Grau, V., Smith, N.: Parallel simulation for parameter estimation of optical tissue properties. In: Euro-Par2010-Parallel Processing, pp. 51–62 (2010)CrossRefGoogle Scholar
  10. 10.
    Bhan, A., Goyal, A., Chauhan, N., Wang, C.W.: Feature line profile based automatic detection of dental caries in bitewing radiography. In: International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pp. 635–640. IEEE (2016)Google Scholar
  11. 11.
    Bhan, A., Goyal, A., Ray, V.: Fast fully automatic multiframe segmentation of left ventricle in cardiac MRI images using local adaptive k-means clustering and connected component labeling. In: 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 114–119. IEEE (2015)Google Scholar
  12. 12.
    Bhan, A., Goyal, A., Dutta, M.K., Sankhla, D., Khanna, P., Travieso, C.M., Hernandez, J.B.A.: Left ventricle wall extraction in cardiac MRI using region based level sets and vector field convolution. In: 4th International Work Conference on Bioinspired Intelligence (IWOBI), pp. 133–138. IEEE (2015)Google Scholar
  13. 13.
    Bhan, A., Goyal, A., Dutta, M.K., Riha, K., Omran, Y.: Image-based pixel clustering and connected component labeling in left ventricle segmentation of cardiac MR images. In: 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 339–342. IEEE (2015)Google Scholar
  14. 14.
    Goyal, A., Bathla, D., Sharma, P., Sahay, M., Sood, S.: MRI image based patient specific computational model reconstruction of the left ventricle cavity and myocardium. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 1065–1068. IEEE (2016)Google Scholar
  15. 15.
    Ray, V., Goyal, A.: Image based sub-second fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac MRI images using pixel clustering and labelling. In: 8th International Conference on Contemporary Computing (IC3), pp. 248–252. IEEE (2015)Google Scholar
  16. 16.
    Ray, V., Goyal, A.: Image-based fuzzy c-means clustering and connected component labeling subsecond fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac Mri images. In: International Conference on Systems in Medicine and Biology (ICSMB). IEEE (2015)Google Scholar
  17. 17.
    Clerk Maxwell, J.: A Treatise on Electricity and Magnetism, vol. 2, pp. 68–73, 3rd edn. Clarendon, Oxford (1892); Jacobs, I.S., Bean, C.P.: Fine particles, thin films and exchange anisotropy. In: Rado, G.T., Suhl, H. (eds.) Magnetism, vol. III, pp. 271–350. Academic, New York (1963)Google Scholar
  18. 18.
    von Schutthess, G.K.: The effects of motion and flow on magnetic resonance imaging. In: Morphology and Function in MRI, Ch. 3, pp. 43–62, 1989Google Scholar
  19. 19.
    Goshtasby, A., Turner, D.A.: Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. IEEE Trans. Med. Imaging 14(1), 56–64 (1995)CrossRefGoogle Scholar
  20. 20.
    Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)CrossRefGoogle Scholar
  21. 21.
    Chen, C., Luo, J., Parker, K.: Image segmentation via adaptive Kmean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Process. 7(12), 1673–1683 (1998)CrossRefGoogle Scholar
  22. 22.
    Mhlenbruch, G., Das, M., Hohl, C., Wildberger, J., Rinck, D., Flohr, T., Koos, R., Knackstedt, C., Gnther, R., Mahnken, A.: Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm. Eur. Radiol. 16(5), 1117–1123 (2005)Google Scholar
  23. 23.
    Vandenberg, B., Rath, L., Stuhlmuller, P., Melton, H., Skorton, D.: Estimation of left ventricular cavity area with an on-line, semiautomated echocardiographic edge detection system. Circulation 86(1), 159–166 (1992)CrossRefGoogle Scholar
  24. 24.
    Petitjean, C., Dacher, J.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)CrossRefGoogle Scholar
  25. 25.
    Lynch, M., Ghita, O., Whelan, P.: Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput. Biol. Med. 36(4), 389–407 (2006)CrossRefGoogle Scholar
  26. 26.
    Kaus, M., Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 8(3), 245–254 (2004)CrossRefGoogle Scholar
  27. 27.
    Suri, J.: Computer vision, pattern recognition and image processing in left ventricle segmentation: the last 50 years. Pattern Anal. Appl. 3(3), 209–242 (2000)CrossRefGoogle Scholar
  28. 28.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Proceedings of the European Conference on Computer Vision, vol. 2, pp. 484–498. Springer (1998)Google Scholar
  29. 29.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Recogn. Mach. Intell. 23(6), 681–685 (2001)CrossRefGoogle Scholar
  30. 30.
    Bhan, A., Bathla, D., Goyal, A.: Patient-specific cardiac computational modeling based on left ventricle segmentation from magnetic resonance images. In: Advances in Intelligent Systems and Computing, vol. 469, pp. 179–187. Springer (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ayush Goyal
    • 1
    Email author
  • Disha Bathla
    • 2
  • Sai Durga Prasad Matla Leela Venkata Manikanta
    • 1
  • Gahangir Hossain
    • 1
  • Rajab Challoo
    • 1
  • Ashwani K. Dubey
    • 2
  • Anupama Bhan
    • 2
  • Priya Ranjan
    • 2
  1. 1.Texas A&M University - KingsvilleKingsvilleUSA
  2. 2.Amity University Uttar PradeshNoidaIndia

Personalised recommendations