Skip to main content

Fluid Management in Neurosurgical Patients

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Intravenous fluids should be regarded with the same consideration as other pharmacologically active agents. Perioperative fluid management is an important component of the treatment to restore and/or maintain adequate cerebral blood flow and cerebral perfusion pressure. The distribution of these infused synthetic fluids in our patients depends on their volume and composition and also the patient’s underlying physiology. Unnecessary volumes, or infusion of hypotonic fluids, results in cerebral edema, influencing the strong ion difference that may in turn affect the acid-base balance. Also, the electrolyte composition has far-reaching consequences, such as chloride rich solutions that contribute toward hyperchloremic acidosis and impaired renal blood flow. Synthetic colloid solutions and mannitol are not without their own limitations, for example, they may also contribute toward acute kidney injury. This chapter discusses treatment choices with different fluid types in specific neurosurgical situations. Perioperative fluid management in these settings should be tailored to suit a patient’s clinical condition and underlying pathophysiology. In general, hypotonic fluids should be avoided, with isotonic fluids being preferred. Personalized fluid management strategies should be guided by dynamic variables that assess fluid responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114(3):640–51. https://doi.org/10.1213/ANE.0b013e318240d6eb.

    Article  PubMed  Google Scholar 

  2. Holte K, Foss NB, Andersen J, Valentiner L, Lund C, Bie P, Kehlet H. Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007;99(4):500–8.

    Article  CAS  PubMed  Google Scholar 

  3. Della Rocca G, Vetrugno L, Tripi G, Deana C, Barbariol F, Pompei L. Liberal or restricted fluid administration: are we ready for a proposal of a restricted intraoperative approach? BCM Anesthesiol. 2014;14:62.

    Article  Google Scholar 

  4. Langer T, Santini A, Scotti E, van Regenmortel N, Malbrain MLNG, Caironi P. Intravenous balanced solutions: from physiology to clinical evidence. Anaesthesiol Intensive Ther. 2015;47:s78–88.

    Article  PubMed  Google Scholar 

  5. Morgan TJ. The ideal crystalloid – what is “balanced”? Curr Opin Crit Care. 2013;19(4):299–307. https://doi.org/10.1097/MCC.0b013e3283632d46.

    Article  PubMed  Google Scholar 

  6. Obregozo Cortes D, Rayo Bonor A, Vincent JL. Isotonic crystalloid solutions: a structured review of literature. Br J Anaesth. 2014;112(6):968–81. https://doi.org/10.1093/bja/aeu047.

    Article  CAS  Google Scholar 

  7. Dabrowski W, Woodcock T, Rzecki Z, Malbrain MLNG. The use of crystalloids in traumatic brain injury. Anaesthesiol Intensive Ther. 2018;50(2):150–9. https://doi.org/10.5603/AIT.a2017.0067.

    Article  PubMed  Google Scholar 

  8. Ko A, Harada MY, Barmparas G, Smith EJT, Birch K, Barnard ZR, Yim DA, Ley EJ. Limit crystalloid resuscitation after traumatic brain injury. Am Surg. 2017;83(12):1447–52.

    PubMed  Google Scholar 

  9. van der Jagt M. Fluid management of neurological patient: a concise review. Crit Care. 2016;20:126. https://doi.org/10.1186/s13054-016-1309-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reddy S, Weinberg L, Young P. Crystalloid fluid therapy. Crit Care. 2016;20:59. https://doi.org/10.1186/s13054-016-1217-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer EA, Ozier Y, Riddez L, Schultz A, Vincent JL, Spahn DR. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20:100.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zander R. Fluid management. Second expanded edition. Melsungen: Bibliomed Medizinische Verlags GmbH; 2009. p. 32–9.

    Google Scholar 

  13. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evolution of the evidence. Fluids Barriers CNS. 2014;11(1):26. https://doi.org/10.1186/2045-8118-11-26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morgan TJ, Venkatesh B, Beindorf A, Andrew I, Hall J. Acid-base and bio-energetics during balanced versus unbalanced normovolaemic haemodilution. Anesth Intensive Care. 2007;35:173–9.

    Article  CAS  Google Scholar 

  15. Toyonaga Y, Kikura M. Hyperchloremic acidosis is associated with acute kidney injury after abdominal surgery. Nephrology. 2017;22(9):720–7. https://doi.org/10.1111/nep.12840.

    Article  CAS  PubMed  Google Scholar 

  16. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38. https://doi.org/10.1186/s13613-014-0038-4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quilley CP, Lin YS, McGiff JC. Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents. Br J Pharmacol. 1993;108(1):106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McClusekey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21. https://doi.org/10.1213/ANE.0b013e318293d81e.

    Article  Google Scholar 

  19. Mann C, Held U, Herzog S, Baenziger O. Impact of normal saline infusion on postoperative metabolic acidosis. Paediatr Anaesth. 2009;19(11):1070–7. https://doi.org/10.1111/j.1460-9592.2009.03126.x.

    Article  PubMed  Google Scholar 

  20. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–9.

    Article  PubMed  Google Scholar 

  21. Li H, Sun SR, Yap JQ, Chen JH, Qian Q. 0.9% saline is neither normal nor physiological. J Zhejiang Univ Sci B. 2016;17(3):181–7. https://doi.org/10.1631/jzus.B1500201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93(4):811–6.

    Article  CAS  PubMed  Google Scholar 

  23. Jin G, DeMoya MA, Duggan M, Knightly T, Mejaddam AY, Hwabejire J, Lu J, Smith WM, Kasotakis G, Velmahos GC, Socrate S, Alam HB. Traumatic brain injury and hemorrhagic shock: evaluation of different resuscitation strategies in a large animal model of combined insults. Shock. 2012;38(1):49–56.

    Article  PubMed  Google Scholar 

  24. Dekker SE, Sillesen M, Bambakidis T, Jin G, Liu B, Boer C, Johansson PI, Halaweish I, Maxwell J, Alam HB. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 2014;156(3):556–63. https://doi.org/10.1016/j.surg.2014.04.016.

    Article  PubMed  Google Scholar 

  25. Santi M, Lava SA, Camozzi P, Giannini O, Milani GP, Simonetti GD, Fossali EF, Bianchetti MG, Faré PB. The great fluid debate: saline or so-called “balanced” salt solutions? Ital J Pediatr. 2015;41:47. https://doi.org/10.1186/s13052-015-0154-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Severs D, Hoorn EJ, Rookmaaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30(2):178–87. https://doi.org/10.1093/ndt/gfu005.

    Article  CAS  Google Scholar 

  27. Roquilly A, Mahe PJ, Demeure Dit Latte D, Loutrel O, Champin P, Falco C, Courbe A, Buffenoir K, Hamel O, Lejus C, Sebille V, Asehnoune K. Continuous controlled-infusion of hypertonic saline solution in traumatic brain injured patients: a 9-year retrospective study. Crit Care. 2011;15:R260. https://doi.org/10.1186/cc10522.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maguigan KL, Dennis BM, Hamblin SE, Guillamondegui OD. Method of hypertonic saline administration: effects on osmolality in traumatic brain injury patients. J Clin Neurosci. 2017;39:147–50. https://doi.org/10.1016/j.jocn.2017.01.025.

    Article  CAS  PubMed  Google Scholar 

  29. Liamis G, Filippatos TD, Elisaf MS. Correction of hypovolemia with crystalloid fluids: individualizing infusion therapy. Postgrad Med. 2015;127(4):405–12.

    Article  PubMed  Google Scholar 

  30. Hammond NE, Taylor C, Finfer S, Machado FR, An Y, Billot L, Bloos F, Bozza F, Cavalcanti AB, Correa M, Du B, Hjortrup PB, Li Y, McIntryre L, Saxena M, Schortgen F, Watts NR, Myburgh J, Fluid-TRIPS and Fluidos Investigators, George Institute for Global Health, The ANZICS Clinical Trials Group, BRICNet, The REVA Research Network. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: an international cross-sectional study. PLoS One. 2017;12(5):e0176292. https://doi.org/10.1371/journal.pone.0176292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGuire MD, Heung M. Fluid as a drug: balancing resuscitation and fluid overload in the intensive care setting. Adv Chronic Kidney Dis. 2016;23(3):152–9. https://doi.org/10.1053/j.ackd.2016.02.006.

    Article  PubMed  Google Scholar 

  32. Krajewski ML, Raghumathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36.

    Article  CAS  PubMed  Google Scholar 

  33. Bampoe S, Odor PM, Dushianthan A, Bennett-Guerrero E, Cro S, Gan TJ, Grocott MP, James MF, Mythen MG, O’Malley CM, Roche AM, Rowan K, Burdett E. Perioperative administration of buffered versus non-buffered crystalloids intravenous fluid to improve outcomes following adult surgical procedures. Cochrane Database Syst Rev. 2017;21(9):CD004089. https://doi.org/10.1002/14651858.CD004089.pub3.

    Article  Google Scholar 

  34. Shaw AD, Schermer CR, Lobo DN, Munson SH, Khangulov V, Hayashida DK, Kellum JA. Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care. 2015;19:334.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu BU, Hwang JQ, Gardner TH, Repas K, Delee R, Yu S, Smith B, Banks PA, Conwell DL. Lactated Ringer’s solutions reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol. 2011;9:710–7.e1. https://doi.org/10.1016/j.cgh.2011.04.026.

    Article  PubMed  Google Scholar 

  36. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schremer CR, Kellum JA. Major complications, mortality and resource utilisation after open abdominal surgery. 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255:821–9.

    Article  PubMed  Google Scholar 

  37. Roquilly A, Loutrel O, Cinotti R, Rosenczweig E, Flet L, Mahe PJ, Dumont R, Marie Chupin A, Peneau C, Lejus C, Blanloeil Y, Volteau C, Asehnoune K. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care. 2013;17(2):R77. https://doi.org/10.1186/cc12686.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, Anderson BA, Scherer LA. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259:255–62. https://doi.org/10.1097/SLA.0b013e318295feba.

    Article  PubMed  Google Scholar 

  39. Exo JL, Shellington DK, Bayir H, Vagni VA, Janesco-Feldman K, Ma L, Hsia CJ, Clark RS, Jenkins LW, Dixon CE, Kochanek PM. Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma. 2009;26(12):2403–8. https://doi.org/10.1089/neu.2009.0980.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94. https://doi.org/10.1093/bja/aer515.

    Article  CAS  PubMed  Google Scholar 

  41. Woodcock TE. Plasma volume, tissue oedema and the steady-state Starling Pronciple. Br J Anaesth Educ. 2017;17(2):74–8. https://doi.org/10.1093/bjaed/mkw035.

    Article  Google Scholar 

  42. Martin G, Bennett-Guerrero E, Wakeling H, Mythen MG, el-Moalem H, Robertson K. A prospective, randomized comparison of tromboelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle or 6% hetastarch in saline during major surgery. J Cardiothorac Vasc Anesth. 2002;16:441–6.

    Article  CAS  PubMed  Google Scholar 

  43. Kozek-Langenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21:285–91.

    Article  PubMed  Google Scholar 

  44. Nilsson CU, Strandberg K, Engström M, Reinstrup P. Coagulation during elective neurosurgery with hydroxyethyl starch fluid therapy: an observational study with thromboelastometry, fibrinogen and factor XIII. Perioper Med. 2016;17(5):20. https://doi.org/10.1186/s13741-016-0046-z.

    Article  Google Scholar 

  45. Schick MA, Baar W, Bruno RR, Wollborn J, Held C, Schneider R, Flemming S, Schlegel N, Roewer N, Neuhaus W, Wunder C. Balanced hydroxyethyl starch (HES 130/0.4) impairs kidney function in-vivo without inflammation. PLoS One. 2015;10(9):e0137247. https://doi.org/10.1371/journal.pone.0137247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88. https://doi.org/10.1001/jama.2013.430.

    Article  CAS  PubMed  Google Scholar 

  47. Kamann S, Flaig MJ, Korting HC. Hydroxyethyl starch-induced itch: relevance of light microscopic analysis of semi-thin sections and electron microscopy. J Dtsch Dermatol Ges. 2007;5(3):204–8.

    Article  PubMed  Google Scholar 

  48. Zarychanski R, Turgeon AF, Fergusson DA, Cook DJ, Hébert P, Bagshaw SM, Monsour D, McIntyre L. Renal outcomes and mortality following hydroxyethyl starch resuscitation of critically ill patients: systematic review and meta-analysis of randomized trials. Open Med. 2009;3(4):e196–209.

    PubMed  PubMed Central  Google Scholar 

  49. Kieninger M, Unbekannt D, Schneiker A, Sinner B, Bele S, Prasser C. Effect of hydroxyethyl starch solution on incidence of acute kidney injury in patients suffering from cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(1):34–40. https://doi.org/10.1007/s12028-016-0265-7.

    Article  CAS  PubMed  Google Scholar 

  50. Hussain SF, Drew PJT. Acute renal failure after infusion of gelatin. Br Med J. 1989;299:1137–8.

    Article  CAS  Google Scholar 

  51. Shi J, Qian J, Li H, Luo H, Luo W, Lin Z. Renal tubular epithelial cells injury induced by mannitol and its potential mechanism. Ren Fail. 2018;40(1):85–91. https://doi.org/10.1080/0886022X.2017.1419973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schick MA, Isbary TJ, Schlegel N, Brugger J, Waschke J, Muellenbach R, Roewer N, Wunder C. The impact of crystalloid and colloid infusion on the kidney in rodent sepsis. Intensive Care Med. 2010;36(3):541–8. https://doi.org/10.1007/s00134-009-1704-0.

    Article  PubMed  Google Scholar 

  53. Schabinski F, Oishi J, Tuche F, Luy A, Sakr Y, Bredle D, Hartog C, Reinhart K. Effects of a predominantly hydroxyethyl starch (HES) – based and a predominantly non HES – based fluid on renal function in surgical ICU patients. Intensive Care Med. 2009;35(9):1539–47. https://doi.org/10.1007/s00134-009-1509-1.

    Article  CAS  PubMed  Google Scholar 

  54. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.

    PubMed  Google Scholar 

  55. Tsai SF, Shu KH. Mannitol-induced acute renal failure. Clin Nephrol. 2010;74:70–3.

    Article  PubMed  Google Scholar 

  56. Van Hengel P, Nikken JJ, de Jong GM, Hesp WL, van Bommel EF. Mannitol-induced acute renal failure. Neth J Med. 1997;50:21–4.

    Article  PubMed  Google Scholar 

  57. Deng Y, Yuan J, Chi R, Ye H, Zhou D, Wang S, Mai C, Nie Z, Wang L, Zhai Y, Gao L, Zhang D, Hu L, Deng Y, Chen C. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7(1):4245. https://doi.org/10.1038/s41598-017-04627-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nomani AZ, Nabi Z, Rashid H, Janjua J, Nomani H, Majeed A, Chaudry SR, Mazhar AS. Osmotic nephrosis with mannitol: review article. Ren Fail. 2014;36(7):1169–76. https://doi.org/10.3109/0886022X.2014.926758.

    Article  CAS  PubMed  Google Scholar 

  59. Hays AN, Lazaridis C, Neyens R, Nicholas J, Gay S, Chalela JA. Osmotherapy: use among neurointensivists. Neurocrit Care. 2011;14:222–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kissoon NR, Mandrekar JN, Fugate JE, Lanzino G, Wijdicks EF, Rabinstein AA. Positive fluid balance is associated with poor outcomes in subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2015;24:2245–51.

    Article  PubMed  Google Scholar 

  61. Kunze E, Stetter C, Willner N, Koehler S, Kilgenstein C, Ernestus RI, Kranke P, Muellenbach RM, Westermaier T. Effects of fluid treatment with hydroxyethyl starch on renal function in patients with aneurysmal subarachnoid haemorrhage. J Neurosurg Anesthesiol. 2016;28(3):187–94. https://doi.org/10.1097/ANA.0000000000000205.

    Article  PubMed  Google Scholar 

  62. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, PW MM Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H, American Heart Association Stroke Council, Council on Cardiovascular Nursing, Council on Peripheral Vascular Disease, Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947. https://doi.org/10.1161/STR.0b013e318284056a.

    Article  PubMed  Google Scholar 

  63. Kirkman MA, Citerio G, Smith M. The intensive care management of acute ischemic stroke: an overview. Intensive Care Med. 2014;40:640–53.

    Article  CAS  PubMed  Google Scholar 

  64. Lai YC, Manninen PH. Anesthesia for cerebral aneurysms: a comparison between interventional neuroradiology and surgery. Can J Anaesth. 2001;48(4):391–5.

    Article  CAS  PubMed  Google Scholar 

  65. Sundaram SC, Salins SR, Kumar AN, Korula G. Intra-operative fluid management in adult neurosurgical patients undergoing intracranial tumour surgery: randomised control trial comparing pulse pressure variance (PPV) and central venous pressure (CVP). J Clin Diagn Res. 2016;10(5):UC01–5. https://doi.org/10.7860/JCDR/2016/18377.7850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hennings LI, Haase N, Pedersen UG, Perner A. Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit. Dan Med J. 2015;62(9):A5136.

    PubMed  Google Scholar 

  67. Monge Gracia MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.

    Article  Google Scholar 

  68. Wu CY, Lin YS, Tseng HM, Cheng HL, Lee TS, Lin PL, Chou WH, Cheng YJ. Comparison of two stroke volume variation-based goal-directed fluid therapies for supratentorial brain tumour resection: a randomized controlled trial. Br J Anaesth. 2017;119(5):934–42. https://doi.org/10.1093/bja/aex189.

    Article  CAS  PubMed  Google Scholar 

  69. Li J, Ji FH, Yang JP. Evaluation of stroke volume variation obtained by FloTrac™/Vigileo™ system to guide preoperative fluid therapy in patients undergoing brain surgery. J Int Med Res. 2012;40(3):1175–81.

    Article  CAS  PubMed  Google Scholar 

  70. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111(4):910–4.

    PubMed  Google Scholar 

  71. Yu Y, Dong J, Xu Z, Shen H, Zheng J. Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput. 2015;29(1):47–52.

    Article  PubMed  Google Scholar 

  72. Jones S, Schwartzbauer G, Jia X. Brain monitoring in critically neurologically impaired patients. Int J Mol Sci. 2016;18(1):E43. https://doi.org/10.3390/ijms18010043.

    Article  CAS  PubMed  Google Scholar 

  73. Perel A. Iatrogenic hemodilution: a possible cause for avoidable blood transfusions? Crit Care. 2017;21(1):29.1. https://doi.org/10.1186/s13054-017-1872-1.

    Article  Google Scholar 

  74. Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Early intensive versus minimally invasive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014;45(5):1280–4. https://doi.org/10.1161/strokeaha.114.004739.

    Article  PubMed  Google Scholar 

  75. Mutoh T, Kazumata K, Yokoyama Y, Ishikawa T, Taki Y, Terasaka S, Houkin K. Comparison of postoperative volume status and hemodynamics between surgical clipping and endovascular coiling in patients after subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2015;27(1):7–15. https://doi.org/10.1097/ANA.0000000000000066.

    Article  PubMed  Google Scholar 

  76. Sharma D, Vavilala M. Perioperative management of adult traumatic brain injury. Anesthesiol Clin. 2012;30:333–46.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kinoshita K, Kushi H, Sakurai A, Utagawa A, Saito T, Moriya T, Hayashi N. Risk factors for intraoperative hypotension in traumatic intracranial hematoma. Resuscitation. 2004;60:151–5.

    Article  PubMed  Google Scholar 

  78. Wang WH, Hu LS, Lin H, Li J, Luo F, Huang W, Lin JM, Cai GP, Liu CC. Risk factors for post-traumatic massive cerebral infarction secondary to space-occupying epidural hematoma. J Neurotrauma. 2014;31(16):1444–50. https://doi.org/10.1089/neu.2013.3142.

    Article  PubMed  Google Scholar 

  79. Sharma D, Brown MJ, Curry P, Noda S, Chesnut RM, Vavilala MS. Prevalence and risk factors for intraoperative hypotension during craniotomy for traumatic brain injury. J Neurosurg Anesthesiol. 2012;24:178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bette S, Wiestler B, Wiedenmann F, Kaesmacher J, Bretschneider M, Barz M, Huber T, Ryang YM, Kochs E, Zimmer C, Meyer B, Boeckh-Behrens T, Kirschke JS, Gempt J. Safe brain tumor resection does not depend on surgery alone – role of hemodynamics. Sci Rep. 2017;7(1):5585. https://doi.org/10.1038/s41598-017-05767-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peng Y, Du J, Zhao X, Shi X, Wang Y. Effects of colloid pre-loading on thromboelastography during elective intracranial tumor surgery in padiatric patients: hydroxyethyl starch 130/0.4 versus 5% human albumin. BCM Anesthesiol. 2017;17:62. https://doi.org/10.1186/s12871-017-0353-z.

    Article  CAS  Google Scholar 

  82. Velat GJ, Kimball MM, Mocco JD, Hoh BL. Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature. World Neurosurg. 2011;76(5):446–54. https://doi.org/10.1016/j.wneu.2011.02.030.

    Article  PubMed  Google Scholar 

  83. Malinova V, Schatlo B, Voit M, Suntheim P, Rohde V, Mielke D. The impact of temporary clipping during aneurysm surgery on the incidence of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;15:1–7. https://doi.org/10.3171/2017.3.JNS162505.

    Article  Google Scholar 

  84. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: and update. Ann Neurol. 1983;14:599–608.

    Article  CAS  PubMed  Google Scholar 

  85. Egge A, Waterloo K, Sjøholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):593–605.

    CAS  PubMed  Google Scholar 

  86. Togashi K, Joffe AM, Sekhar L, Kim L, Lam A, Yanez D, Broeckel-Elrod JA, Moore A, Deem S, Khandelwal N, Souter MJ, Treggiari MM. Randomized pilot trial of intensive management of blood pressure or volume expansion in subarachnoid hemorrhage (IMPROVES). Neurosurgery. 2015;76(2):125–34.

    Article  PubMed  Google Scholar 

  87. Tseng MY, Hutchinson PJ, Kirkpatrick PJ. Effects of fluid therapy following aneurysmal subarachnoid haemorrhage: a prospective clinical study. Br J Neurosurg. 2008;22(2):257–68. https://doi.org/10.1080/02688690701832100.

    Article  PubMed  Google Scholar 

  88. Yoneda H, Nakamura T, Shirao S, Tanaka N, Ishihara H, Suehiro E, Koizumi H, Isotani E, Suzuki M, SAH PiCCO Study Group. Multicenter prospective cohort study on volume management after subarachnoid hemorrhage: hemodynamic changes according to severity of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 2013;44(8):2155–61. https://doi.org/10.1161/strokeaha.113.001015.

    Article  PubMed  Google Scholar 

Download references

Competing Interests

Wojciech Dabrowski, Manu Malbrain, and Robert Wise declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabrowski, W., Wise, R., Malbrain, M.L.N.G. (2019). Fluid Management in Neurosurgical Patients. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics