Skip to main content

Pediatric Neuroanesthesia

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care
  • 1223 Accesses

Abstract

Children undergoing a variety of neurosurgical procedures present a unique set of challenges to the anesthesiologist caring for these patients. Anesthesiologists must have a clear understanding of not only basic human neurophysiology but also normal and abnormal human motor and cognitive development. Children are not simply small adults, as evidenced by differences in pharmacokinetics, pharmacodynamics, physiologic responses to varying normal and pathologic situations, and demonstration of allometric scaling. Application of these principles informs good clinical care of children for surgical treatment of neurologic disease. This chapter will highlight these aspects of essential clinical care. Further, aspects of pediatric care including discussions of current thinking on cerebral autoregulation, anesthetic induced neurodegeneration, and common clinical situation in pediatric neuroanesthesia will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arieff AI, Ayus JC, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruce DA, Berman WA, Schut L. Cerebrospinal fluid pressure monitoring in children: physiology, pathology and clinical usefulness. Adv Pediatr Infect Dis. 1977;24:233–90.

    CAS  Google Scholar 

  3. Marshall LF, Smith RW, Shapiro HM. The influence of diurnal rhythms in patients with intracranial hypertension: implications for management. Neurosurgery. 1978;2:100–2.

    Article  CAS  PubMed  Google Scholar 

  4. Hanlon K. Description and uses of intracranial pressure monitoring. Heart Lung. 1976;5:277–82.

    CAS  PubMed  Google Scholar 

  5. Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury: a preliminary report. J Neurosurg. 1965;22:581–90.

    Article  CAS  PubMed  Google Scholar 

  6. Coroneos NJ, McDowall DG, Pickerodt VW, Keaney NP, Gibson RM. A comparison of intracranial extradural pressure with subarachnoid pressure. Br J Anaesth. 1971;43:1198.

    CAS  PubMed  Google Scholar 

  7. Ream AK, Silverberg GD, Corbin SD, Schmidt EV, Fyer TB. Epidural measurement of intracranial pressure. Neurosurgery. 1979;5:36–43.

    Article  CAS  PubMed  Google Scholar 

  8. Levin AB, Kahn AR, Bahr DE. Epidural intracranial pressure monitoring: a new system. Med Instrum. 1983;17:293–6.

    CAS  PubMed  Google Scholar 

  9. Minns RA, Brown JK, Engleman HM. CSF production rate: “real time” estimation. Z Kinderchir. 1987;42:36–40.

    PubMed  Google Scholar 

  10. Blomquist HK, Sundin S, Ekstedt J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49(5):536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shapiro HM. Intracranial hypertension: therapeutic and anesthetic considerations. Anesthesiology. 1975;43:445–71.

    Article  CAS  PubMed  Google Scholar 

  12. Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966;25:430–6.

    Article  CAS  PubMed  Google Scholar 

  13. Clasen RA, Pandolfi S, Casey DJ. Furosemide and pentobarbital in cryogenic cerebral injury and edema. Neurology. 1974;24(7):642–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lassen NA, Christensen MS. Physiology of cerebral blood flow. Br J Anaesth. 1976;48:719–34.

    Article  CAS  PubMed  Google Scholar 

  15. Lassen NA, Hoedt-Rasmussen K. Human cerebral blood flow measured by two inert gas techniques: comparison of the Kety-Schmidt method and the intra-arterial injection method. Circ Res. 1966;19:681–94.

    Article  CAS  PubMed  Google Scholar 

  16. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest. 1948;27:476–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cross KW, Dear PR, Hathorn MK, et al. An estimation of intracranial blood flow in the new-born infant. J Physiol Lond. 1979;289:329–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Younkin DP, Reivich M, Jaggi J, et al. Noninvasive method of estimating human newborn regional cerebral blood flow. J Cereb Blood Flow Metab. 1982;2:415–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption in normal young men. J Clin Invest. 1948;27:484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahilly PM. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate. Pediatrics. 1980;66:685–9.

    CAS  PubMed  Google Scholar 

  22. Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.

    Article  CAS  PubMed  Google Scholar 

  23. Marion DW, Firlik A, McLaughlin MR. Hyperventilation therapy for severe traumatic brain injury. New Horiz. 1995;3:439–47.

    CAS  PubMed  Google Scholar 

  24. Skippen P, Seear M, Poskitt K, et al. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25:1402–9.

    Article  CAS  PubMed  Google Scholar 

  25. Holzman RS. Clinical management of latex-allergic children. Anesth Analg. 1997;85:529–33.

    Article  CAS  PubMed  Google Scholar 

  26. Shapiro HM, Galindo A, Wyte SR, Harris AB. Rapid intraoperative reduction of intracranial pressure with thiopentone. Br J Anaesth. 1973;45:1057–62.

    Article  CAS  PubMed  Google Scholar 

  27. Abou-Madi MN, Keszler H, Yacoub JM. Cardiovascular reactions to laryngoscopy and tracheal intubation following small and large intravenous doses of lidocaine. Can Anaesth Soc J. 1977;24:12–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lockhart CH, Jenkins JJ. Ketamine-induced apnea in patients with increased intracranial pressure. Anesthesiology. 1972;37:92–3.

    Article  CAS  PubMed  Google Scholar 

  29. Crumrine RS, Nulsen FE, Weiss MH. Alterations in ventricular fluid pressure during ketamine anesthesia in hydrocephalic children. Anesthesiology. 1975;42:758–61.

    Article  CAS  PubMed  Google Scholar 

  30. Baker KZ. Desflurane and sevoflurane are valuable additions to the practice of neuroanesthesiology: pro. J Neurosurg Anesthesiol. 1997;9:66–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tempelhoff R. The new inhalational anesthetics desflurane and sevoflurane are valuable additions to the practice of neuroanesthesia: con. J Neurosurg Anesthesiol. 1997;9:69–71.

    Article  CAS  PubMed  Google Scholar 

  32. Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68:548–51.

    Article  CAS  PubMed  Google Scholar 

  33. Jääskeläinen SK, Kaisti K, Suni L, Hinka S, Scheinin H. Sevoflurane is epileptogenic in healthy subjects at surgical levels of anesthesia. Neurology. 2003;61:1073–8.

    Article  PubMed  Google Scholar 

  34. Mazurek AJ, Rae B, Hann S, et al. Rocuronium versus succinylcholine: are they equally effective during rapid-sequence induction of anesthesia? Anesth Analg. 1998;87:1259–62.

    CAS  PubMed  Google Scholar 

  35. Lee LA, Roth S, Posner KL, et al. The American Society of Anesthesiologists Postoperative Visual Field Loss Registry: analysis of 93 spine cases with postoperative visual loss. Anesthesiology. 2006;105:652–9.

    Article  PubMed  Google Scholar 

  36. American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: a report by the American Society of Anesthesiologists Task force on perioperative blindness. Anesthesiology. 2006;104:1319–28.

    Article  Google Scholar 

  37. Scheller MS, Nakakimura K, Fleischer JE, Zornow MH. Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth. 1990;65:388–92.

    Article  CAS  PubMed  Google Scholar 

  38. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283:70–4.

    Article  CAS  PubMed  Google Scholar 

  39. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    Article  CAS  PubMed  Google Scholar 

  40. Slikker W Jr, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98:145–58.

    Article  CAS  PubMed  Google Scholar 

  41. Sall J. Anesthesia kills brain cells, but what does it mean? Anesthesiology. 2016;12(125):1090–1.

    Article  Google Scholar 

  42. Sun L, Li G, Miller T, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315(21):2312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.

    Article  CAS  PubMed  Google Scholar 

  44. Wass CT, Lanier WL. Glucose modulation of ischemic brain injury. review and clinical recommendations. Mayo Clin Proc. 1996;71:801–12.

    Article  CAS  PubMed  Google Scholar 

  45. Harris MM, Yemen TA, Davidson A, et al. Venous embolism during craniectomy in supine infants. Anesthesiology. 1987;67:816–9.

    Article  CAS  PubMed  Google Scholar 

  46. Schafer ST, Lindemann J, Brendt P, Kaiser G, Peters J. Intracardiac transvenous echocardiography is superior to both precordial Doppler and transesophgeal echocardiography techniques for detecting venous air embolism and cather-guided air aspiration. Anesth Analg. 2008;106:45–54.

    Article  PubMed  Google Scholar 

  47. Glenski JA, Cucchiara RF, Michenfelder JD. Transesophageal echocardiography and transcutaneous O2 and CO2 monitoring for detection of venous air embolism. Anesthesiology. 1986;64:541–5.

    Article  CAS  PubMed  Google Scholar 

  48. Moynihan RJ, Brock-Utne JG, Archer JH, Feld LH, Kreitzman TR. The effect of cricoid pressure on preventing gastric insufflation in infants and children. Anesthesiology. 1993;78:652–6.

    Article  CAS  PubMed  Google Scholar 

  49. Goumnerova LC, Frim DM. Treatment of hydrocephalus with third ventriculocisternostomy: outcome and CSF flow patterns. Pediatr Neurosurg. 1997;27:149–52.

    Article  CAS  PubMed  Google Scholar 

  50. Kulkarni A, Schiff S, Mbabazi-Kabachelor E, et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med. 2017;377:2456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eldredge EA, Rockoff MA, Medlock MD, Scott RM, Millis MB. Postoperative cerebral edema occurring in children with slit ventricles. Pediatrics. 1997;99:625–30.

    Article  CAS  PubMed  Google Scholar 

  52. Sutton LN, Adzick NS, Bilaniuk LT, et al. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826–31.

    Article  CAS  PubMed  Google Scholar 

  53. Bruner JP, Tulipan N, Paschall RL, et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA. 1999;282:1819–25.

    Article  CAS  PubMed  Google Scholar 

  54. Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dierdorf SF, McNiece WL, Rao CC, Wolfe TM, Means LJ. Failure of succinylcholine to alter plasma potassium in children with myelomeningocoele. Anesthesiology. 1986;64:272–3.

    Article  CAS  PubMed  Google Scholar 

  56. Birmingham PK, Dsida RM, Grayhack JJ, et al. Do latex precautions in children with myelodysplasia reduce intraoperative allergic reactions? J Pediatr Orthop. 1996;16:799–802.

    Article  CAS  PubMed  Google Scholar 

  57. Oren J, Kelly DH, Todres ID, Shannon DC. Respiratory complications in patients with myelodysplasia and Arnold-Chiari malformation. Am J Dis Child. 1986;140:221–4.

    CAS  PubMed  Google Scholar 

  58. Ward SL, Nickerson BG, van der Hal A, et al. Absent hypoxic and hypercapneic arousal responses in children with myelomeningocele and apnea. Pediatrics. 1986;78:44–50.

    CAS  PubMed  Google Scholar 

  59. Pollack IF. Brain tumors in children. N Engl J Med. 1994;331:1500–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kissoon N, Dreyer J, Walia M. Pediatric trauma: differences in pathophysiology, injury patterns and treatment compared with adult trauma. Can Med Assoc J. 1990;142:27–34.

    CAS  Google Scholar 

  61. Pascucci RC. Head trauma in the child. Intensive Care Med. 1988;14(3):185–95.

    Article  CAS  PubMed  Google Scholar 

  62. Bruce DA, Raphaely RC, Goldberg AI, et al. Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain. 1979;5:174–91.

    CAS  PubMed  Google Scholar 

  63. Bruce DA, Alavi A, Bilaniuk L, et al. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema”. J Neurosurg. 1981;54:170–8.

    Article  CAS  PubMed  Google Scholar 

  64. Rahimi-Movaghar V, Boroojeny SB, Moghtaderi A, Keshmiran B. Intracranial placement of a nasogastric tube: a lesson to be re-learnt? Acta Neurochir. 2005;147:573–4.

    Article  CAS  PubMed  Google Scholar 

  65. Cornett MA, Paris A Jr, Huang TY. Intracranial placement of a nasogastric tube. Am J Emerg Med. 1993;11:94–6.

    Article  CAS  PubMed  Google Scholar 

  66. Fremstad JD, Martin SH. Lethal complication from insertion of nasogastric tube after severe basilar skull fracture. J Trauma. 1978;18:820–2.

    Article  CAS  PubMed  Google Scholar 

  67. Millar C, Bissonnette B, Humphreys RP. Cerebral arteriovenous malformations in children. Can J Anaesth. 1994;41:321–31.

    Article  CAS  PubMed  Google Scholar 

  68. Ostergaard JR, Voldby B. Intracranial arterial aneurysms in children and adolescents. J Neurosurg. 1983;58:832–7.

    Article  CAS  PubMed  Google Scholar 

  69. Salem MR, Wong AY, Bennett EJ, Mani M. Deliberate hypotension in infants and children. Anesth Analg. 1974;53:975–81.

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease: disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99.

    Article  CAS  PubMed  Google Scholar 

  71. Smith ER, McClain CD, Heeney M, Scott RM. Pialsynangiosis in patients with moyamoya disease and sickle cell anemia: perioperative management and surgical outcome. Neurosurg Focus. 2009;26:E10.

    Article  PubMed  Google Scholar 

  72. Adelson PD, Scott RM. Pialsynangiosis for moyamoya syndrome in children. Pediatr Neurosurg. 1995;23:26–33.

    Article  CAS  PubMed  Google Scholar 

  73. Soriano SG, Sethna NF, Scott RM. Anesthetic management of children with moyamoya syndrome. Anesth Analg. 1993;77:1066–70.

    Article  CAS  PubMed  Google Scholar 

  74. Takeuchi S, Tanaka R, Ishii R, et al. Cerebral hemodynamics in patients with moyamoya disease: a study of regional cerebral blood flow by the 133Xe inhalation method. Surg Neurol. 1985;23:468–74.

    Article  CAS  PubMed  Google Scholar 

  75. Reasoner DK, Todd MM, Scamman FL, Warner DS. The incidence of pneumocephalus after supratentorial craniotomy: observations on the disappearance of intracranial air. Anesthesiology. 1994;80:1008–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig McClain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J.T., McClain, C. (2019). Pediatric Neuroanesthesia. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics