Skip to main content

Anesthesia for Traumatic Spine Injury

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Traumatic spinal cord injury (SCI) is associated with comprehensive organ disturbances and neurologic dysfunction. Neurocritical care management of traumatic SCI includes addressing the loss of autoregulation and hemodynamic instability, in addition to proper airway management. The level of spinal injury plays a role in SCI, and respiratory perturbations and secondary sequelae can occur, particularly in high spinal cord lesions. Avoiding secondary sequelae is paramount in improving functional outcomes and recovery. This chapter describes critical aspects of airway and respiratory management, the hemodynamic challenges from spinal shock, associated injuries, autonomic dysreflexia, and the nutritional challenges that occur in the acute phase of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Como JJ, Diaz JJ, Dunham CM, Chiu WC, Duane TM, Capella JM, et al. Practice management guidelines for identification of cervical spine injuries following trauma: update from the eastern association for the surgery of trauma practice management guidelines committee. J Trauma. 2009;67(3):651–9.

    Article  Google Scholar 

  2. Martini RP, Larson DM. Clinical evaluation and airway management for adults with cervical spine instability. Anesthesiol Clin. 2015;33(2):315–27.

    Article  Google Scholar 

  3. Robitaille A. Airway management in the patient with potential cervical spine instability: continuing professional development. Can J Anaesth. 2011;58(12):1125–39.

    Article  Google Scholar 

  4. Brimacombe J, Keller C, Kunzel KH, Gaber O, Boehler M, Puhringer F. Cervical spine motion during airway management: a cinefluoroscopic study of the posteriorly destabilized third cervical vertebrae in human cadavers. Anesth Analg. 2000;91(5):1274–8.

    Article  CAS  Google Scholar 

  5. Turkstra TP, Craen RA, Pelz DM, Gelb AW. Cervical spine motion: a fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg. 2005;101(3):910–5, table of contents.

    Article  Google Scholar 

  6. Sagi HC, Beutler W, Carroll E, Connolly PJ. Airway complications associated with surgery on the anterior cervical spine. Spine (Phila Pa 1976). 2002;27(9):949–53.

    Article  Google Scholar 

  7. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.

    Article  Google Scholar 

  8. Robba C, Qeva E, Borsellino B, Aloisio S, Tosti G, Bilotta F. Effects of propofol or sevoflurane anesthesia induction on hemodynamics in patients undergoing fiberoptic intubation for cervical spine surgery: a randomized, controlled, clinical trial. J Anaesthesiol Clin Pharmacol. 2017;33(2):215–20.

    PubMed  PubMed Central  Google Scholar 

  9. Bao FP, Zhang HG, Zhu SM. Anesthetic considerations for patients with acute cervical spinal cord injury. Neural Regen Res. 2017;12(3):499–504.

    Article  Google Scholar 

  10. Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32(24):1958–67.

    Article  Google Scholar 

  11. Tamkus AA, Rice KS, Kim HL. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014;14(8):1440–6.

    Article  Google Scholar 

  12. Foffani G, Humanes-Valera D, Calderon-Munoz F, Oliviero A, Aguilar J. Spinal cord injury immediately decreases anesthetic requirements in rats. Spinal Cord. 2011;49(7):822–6.

    Article  CAS  Google Scholar 

  13. Readdy WJ, Saigal R, Whetstone WD, Mefford AN, Ferguson AR, Talbott JF, et al. Failure of mean arterial pressure goals to improve outcomes following penetrating spinal cord injury. Neurosurgery. 2016;79(5):708–14.

    Article  Google Scholar 

  14. Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(Suppl 1):82–91.

    Article  Google Scholar 

  15. Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2008;31(4):403–79.

    Article  Google Scholar 

  16. Inoue T, Manley GT, Patel N, Whetstone WD. Medical and surgical management after spinal cord injury: vasopressor usage, early surgeries, and complications. J Neurotrauma. 2014;31(3):284–91.

    Article  Google Scholar 

  17. Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48(5):356–62.

    Article  CAS  Google Scholar 

  18. Catapano JS, John Hawryluk GW, Whetstone W, Saigal R, Ferguson A, Talbott J, et al. Higher mean arterial pressure values correlate with neurologic improvement in patients with initially complete spinal cord injuries. World Neurosurg. 2016;96:72–9.

    Article  Google Scholar 

  19. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.

    Article  CAS  Google Scholar 

  20. Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study. Crit Care Med. 2014;42(3):646–55.

    Article  Google Scholar 

  21. Shaikh N, Rhaman MA, Raza A, Shabana A, Malstrom MF, Al-Sulaiti G. Prolonged bradycardia, asystole and outcome of high spinal cord injury patients: risk factors and management. Asian J Neurosurg. 2016;11(4):427–32.

    Article  Google Scholar 

  22. Dicpinigaitis PV, Spungen AM, Bauman WA, Absgarten A, Almenoff PL. Bronchial hyperresponsiveness after cervical spinal cord injury. Chest. 1994;105(4):1073–6.

    Article  CAS  Google Scholar 

  23. Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des. 2005;11(11):1353–89.

    Article  CAS  Google Scholar 

  24. Harrois A, Hamada SR, Duranteau J. Fluid resuscitation and vasopressors in severe trauma patients. Curr Opin Crit Care. 2014;20(6):632–7.

    Article  Google Scholar 

  25. Squair JW, Belanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7.

    Article  Google Scholar 

  26. Saulino M. Spinal cord injury pain. Phys Med Rehabil Clin N Am. 2014;25(2):397–410.

    Article  Google Scholar 

  27. Matyas JJ, O’Driscoll CM, Yu L, Coll-Miro M, Daugherty S, Renn CL, et al. Truncated TrkB.T1-mediated astrocyte dysfunction contributes to impaired motor function and neuropathic pain after spinal cord injury. J Neurosci. 2017;37(14):3956–71.

    Article  CAS  Google Scholar 

  28. Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, et al. Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res. 2017;35(1):93–103.

    Article  CAS  Google Scholar 

  29. Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, et al. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. J Neurophysiol. 2016;115(6):2893–910.

    Article  CAS  Google Scholar 

  30. Guy SD, Mehta S, Casalino A, Cote I, Kras-Dupuis A, Moulin DE, et al. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: recommendations for treatment. Spinal Cord. 2016;54(Suppl 1):S14–23.

    Article  Google Scholar 

  31. Hagen EM, Rekand T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015;4(1):51–65.

    Article  Google Scholar 

Download references

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Applegate II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akyol, O., Reis, C., Reis, H., Zhang, J., Cheng, S., Applegate, R.L. (2019). Anesthesia for Traumatic Spine Injury. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics