Skip to main content

Advances in Stem Cell Research in Sepsis

  • Chapter
  • First Online:
Severe Trauma and Sepsis
  • 707 Accesses

Abstract

Sepsis is one of the leading causes of death among hospitalized patients despite appropriate antimicrobial and resuscitative approaches. Recent research has focused on exogenous stem cell-based therapy. This chapter is mainly divided into two sections, endogenous stem cell- and exogenous mesenchymal stem cell-based treatment in sepsis. Sepsis-related endogenous stem cells include muscle stem cell dysfunction and hematopoietic stem cell exhaustion and myelosuppression in sepsis. Mesenchymal stem cells (MSCs) display multiple beneficial properties as a promising candidate for stem cell-based therapy by their intrinsic ability to decrease apoptosis and home to injured tissue, beneficially modulate immune cells, secrete paracrine signals (e.g., IL-10, PGE2, and IDO) to limit systemic and local inflammation, activate resident stem cells, and stimulate neoangiogenesis. These effects are associated with improved survival and reduced organ dysfunction in animal models. Indeed, research utilizing sepsis animal models have revealed the ability of MSCs to markedly inhibit the multi-organ dysfunction as well as the inciting inflammatory phase of sepsis observed in the later phase of sepsis resulting in improving organ function and survival, and recently clinical trials have demonstrated the safety of intravenous infusion MSCs with sepsis patients. Overall, more multicenter random clinical trials need to be developed to evaluate the role of MSCs and establish the standardized clinical guideline in septic patient in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angus DC, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  2. Levy MM, et al. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36(2):222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wannemuehler TJ, et al. Advances in mesenchymal stem cell research in sepsis. J Surg Res. 2012;173(1):113–26.

    Article  PubMed  Google Scholar 

  4. Rocheteau P, et al. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun. 2015;6:10145.

    Article  CAS  PubMed  Google Scholar 

  5. Trounson A, et al. Clinical trials for stem cell therapies. BMC Med. 2011;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crisostomo PR, et al. Surgically relevant aspects of stem cell paracrine effects. Surgery. 2008;143(5):577–81.

    Article  PubMed  Google Scholar 

  7. Ceradini DJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  8. Weil BR, et al. Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxemia. Surgery. 2010;148(2):444–52.

    Article  PubMed  Google Scholar 

  9. Xu J, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L131–41.

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, et al. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R880–4.

    Article  CAS  PubMed  Google Scholar 

  11. Fletcher SN, et al. Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med. 2003;31(4):1012–6.

    Article  PubMed  Google Scholar 

  12. Zhang H, et al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Reports. 2016;6(6):940–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol. 2013;34(3):129–36.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez S, et al. Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood. 2009;114(19):4064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esplin BL, et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol. 2011;186(9):5367–75.

    Article  CAS  PubMed  Google Scholar 

  16. De Miguel MP, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.

    Article  PubMed  Google Scholar 

  17. Shi Y, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010;20(5):510–8.

    Article  CAS  PubMed  Google Scholar 

  18. Weil BR, et al. Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock. 2011;36(3):235–41.

    Article  PubMed  Google Scholar 

  19. Nemeth K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ponte AL, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45.

    Article  CAS  PubMed  Google Scholar 

  21. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood). 2001;226(6):507–20.

    Article  CAS  Google Scholar 

  22. Segers VF, et al. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol. 2006;290(4):H1370–7.

    Article  CAS  PubMed  Google Scholar 

  23. Brooke G, et al. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev. 2008;17(5):929–40.

    Article  CAS  PubMed  Google Scholar 

  24. Ringe J, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007;101(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  25. Tondreau T, et al. In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues. Cytotherapy. 2009;11(5):559–69.

    Article  CAS  PubMed  Google Scholar 

  26. De Becker A, et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica. 2007;92(4):440–9.

    Article  PubMed  Google Scholar 

  27. Ries C, et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007;109(9):4055–63.

    Article  CAS  PubMed  Google Scholar 

  28. Von Luttichau I, et al. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev. 2005;14(3):329–36.

    Article  Google Scholar 

  29. Gonzalez-Rey E, et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang D, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008;44(2):281–92.

    Article  CAS  PubMed  Google Scholar 

  31. Hu X, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301(2):C362–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li D, et al. Bone marrow mesenchymal stem cells suppress acute lung injury induced by lipopolysaccharide through inhibiting the TLR2, 4/NF-kappaB pathway in rats with multiple trauma. Shock. 2016;45(6):641–6.

    Article  CAS  PubMed  Google Scholar 

  33. Luo Y, et al. Pretreating mesenchymal stem cells with interleukin-1beta and transforming growth factor-beta synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia. Surgery. 2012;151(3):353–63.

    Article  PubMed  Google Scholar 

  34. Mei SH, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–57.

    Article  CAS  PubMed  Google Scholar 

  35. Kim JS, et al. A novel therapeutic approach using mesenchymal stem cells to protect against mycobacterium abscessus. Stem Cells. 2016;34(7):1957–70.

    Article  CAS  PubMed  Google Scholar 

  36. Choi H, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011;118(2):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  38. Kinnaird T, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678–85.

    Article  CAS  PubMed  Google Scholar 

  39. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4(Suppl 1):S21–6.

    Article  PubMed  Google Scholar 

  40. Gupta N, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179(3):1855–63.

    Article  CAS  PubMed  Google Scholar 

  41. Yagi H, et al. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 2010;19(6):823–30.

    Article  PubMed  Google Scholar 

  42. Manukyan MC, et al. Female stem cells are superior to males in preserving myocardial function following endotoxemia. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim ES, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res. 2011;12:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang CL, et al. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. J Transl Med. 2012;10:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li J, et al. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm (Lond). 2012;9(1):33.

    Article  CAS  Google Scholar 

  46. Zhao Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on pulmonary impact injury complicated with endotoxemia in rats. Int Immunopharmacol. 2013;15(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  47. Sepulveda JC, et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells. 2014;32(7):1865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanaka F, et al. Exogenous administration of mesenchymal stem cells ameliorates dextran sulfate sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci. 2008;83(23–24):771–9.

    Article  CAS  PubMed  Google Scholar 

  49. McIntyre LA, et al. Cellular immunotherapy for septic shock. A phase I clinical trial. Am J Respir Crit Care Med. 2018;197(3):337–47.

    Article  CAS  PubMed  Google Scholar 

  50. He X, et al. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: a phase 1 clinical trial. Transl Res. 2018. https://doi.org/10.1016/j.trsl.2018.04.006.

    Article  PubMed  Google Scholar 

  51. Ortiz LA, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A. 2007;104(26):11002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JW, et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A. 2009;106(38):16357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mei SH, et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Spaggiari GM, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33.

    Article  CAS  PubMed  Google Scholar 

  55. English K, et al. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25 (High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;156(1):149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spaggiari GM, et al. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113(26):6576–83.

    Article  CAS  PubMed  Google Scholar 

  57. Chen K, et al. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol. 2010;135(3):448–58.

    Article  CAS  PubMed  Google Scholar 

  58. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006;6(11):813–22.

    Article  CAS  PubMed  Google Scholar 

  59. Xu M, et al. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol. 2007;42(2):441–8.

    Article  CAS  PubMed  Google Scholar 

  60. Hu X, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799–808.

    Article  CAS  PubMed  Google Scholar 

  61. Li W, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8):2118–27.

    Article  CAS  PubMed  Google Scholar 

  62. Dernbach E, et al. Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004;104(12):3591–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ramalho-Santos M, et al. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600.

    Article  CAS  PubMed  Google Scholar 

  64. Ivanova NB, et al. A stem cell molecular signature. Science. 2002;298(5593):601–4.

    Article  CAS  PubMed  Google Scholar 

  65. Pulido EJ, et al. Differential inducible nitric oxide synthase expression in systemic and pulmonary vessels after endotoxin. Am J Physiol Regul Integr Comp Physiol. 2000;278(5):R1232–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hotchkiss RS, Tinsley KW, Karl IE. Role of apoptotic cell death in sepsis. Scand J Infect Dis. 2003;35(9):585–92.

    Article  CAS  PubMed  Google Scholar 

  67. Vanhorebeek I, et al. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet. 2005;365(9453):53–9.

    Article  CAS  PubMed  Google Scholar 

  68. Crisostomo PR, et al. Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55 kDa TNF receptor (TNFR1). J Mol Cell Cardiol. 2007;42(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  69. Crisostomo PR, et al. Sex dimorphisms in activated mesenchymal stem cell function. Shock. 2006;26(6):571–4.

    Article  CAS  PubMed  Google Scholar 

  70. Poynter JA, et al. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg. 2011;213(2):253–60.

    Article  PubMed  Google Scholar 

  71. Wang X, et al. Stem cells for myocardial repair with use of a transarterial catheter. Circulation. 2009;120(11 Suppl):S238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gnecchi M, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661–9.

    Article  CAS  PubMed  Google Scholar 

  73. Ohnishi S, et al. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells. 2007;25(5):1166–77.

    Article  CAS  PubMed  Google Scholar 

  74. Vandervelde S, et al. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol. 2005;39(2):363–76.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, et al. MEK mediates the novel cross talk between TNFR2 and TGF-EGFR in enhancing vascular endothelial growth factor (VEGF) secretion from human mesenchymal stem cells. Surgery. 2009;146(2):198–205.

    Article  PubMed  Google Scholar 

  76. Crisostomo PR, et al. Human mesenchymal stem cells stimulated by TNF-αlpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294(3):C675–82.

    Article  CAS  PubMed  Google Scholar 

  77. Tang YL, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. 2005;80(1):229–36. discussion 236–7.

    Article  PubMed  Google Scholar 

  78. Fan W, Crawford R, Xiao Y. The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation. 2011;81(3):181–91.

    Article  CAS  PubMed  Google Scholar 

  79. Johansson U, et al. Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes. 2008;57(9):2393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beckermann BM, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008;99(4):622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.

    Article  PubMed  CAS  Google Scholar 

  82. Marian AJ, Roberts R. Familial hypertrophic cardiomyopathy: a paradigm of the cardiac hypertrophic response to injury. Ann Med. 1998;30(Suppl 1):24–32.

    CAS  PubMed  Google Scholar 

  83. Zisa D, et al. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochem Biophys Res Commun. 2009;390(3):834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Urbich C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733–42.

    Article  CAS  PubMed  Google Scholar 

  85. Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol. 2011;164(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maccario R, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516–25.

    CAS  PubMed  Google Scholar 

  87. Zhang W, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13(3):263–71.

    Article  CAS  PubMed  Google Scholar 

  88. Spaggiari GM, et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107(4):1484–90.

    Article  CAS  PubMed  Google Scholar 

  89. Prigione I, et al. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells. 2009;27(3):693–702.

    Article  CAS  PubMed  Google Scholar 

  90. Nauta AJ, et al. Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol. 2006;177(4):2080–7.

    Article  CAS  PubMed  Google Scholar 

  91. Corcione A, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.

    Article  CAS  PubMed  Google Scholar 

  92. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  CAS  PubMed  Google Scholar 

  93. Kronsteiner B, et al. Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cell Immunol. 2011;267(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  94. Gao S, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-kappaB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood). 2014;239(3):366–75.

    Article  CAS  Google Scholar 

  95. van den Berk LC, et al. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells. Immunology. 2009;128(4):564–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109(8):923–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Selmani Z, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22.

    Article  CAS  PubMed  Google Scholar 

  98. Krasnodembskaya A, et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):L1003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rasmusson I, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76(8):1208–13.

    Article  PubMed  Google Scholar 

  100. Ren G, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  101. Sheng H, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18(8):846–57.

    Article  CAS  PubMed  Google Scholar 

  102. Gonzalez MA, et al. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19.

    Article  CAS  PubMed  Google Scholar 

  103. Melief SM, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31(9):1980–91.

    Article  CAS  PubMed  Google Scholar 

  104. Deng W, et al. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005;24(7):458–63.

    Article  CAS  PubMed  Google Scholar 

  105. Krampera M, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24(2):386–98.

    Article  CAS  PubMed  Google Scholar 

  106. Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci. 2009;1176:101–17.

    Article  CAS  PubMed  Google Scholar 

  107. Augello A, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482–90.

    Article  CAS  PubMed  Google Scholar 

  108. Sotiropoulou PA, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85.

    Article  PubMed  Google Scholar 

  109. Le Blanc K, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41.

    Article  PubMed  Google Scholar 

  110. Li FR, et al. Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clin Exp Immunol. 2010;161(2):357–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Di Ianni M, et al. Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol. 2008;36(3):309–18.

    Article  PubMed  CAS  Google Scholar 

  112. Djouad F, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.

    Article  CAS  PubMed  Google Scholar 

  113. Bassi EJ, Aita CA, Camara NO. Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells. 2011;3(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Le Blanc K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  PubMed  CAS  Google Scholar 

  115. Nasef A, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  116. Xu G, et al. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res. 2007;17(3):240–8.

    Article  CAS  PubMed  Google Scholar 

  117. Ringden O, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006;81(10):1390–7.

    Article  PubMed  Google Scholar 

  118. Opitz CA, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells. 2009;27(4):909–19.

    Article  CAS  PubMed  Google Scholar 

  119. Guo Z, et al. Mesenchymal stem cells reprogram host macrophages to attenuate obliterative bronchiolitis in murine orthotopic tracheal transplantation. Int Immunopharmacol. 2013;15(4):726–34.

    Article  CAS  PubMed  Google Scholar 

  120. Matsuda M, et al. Interleukin 10 pretreatment protects target cells from tumor- and Allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med. 1994;180(6):2371–6.

    Article  CAS  PubMed  Google Scholar 

  121. Petersson M, et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol. 1998;161(5):2099–105.

    CAS  PubMed  Google Scholar 

  122. Bonder CS, et al. P-selectin can support both Th1 and Th2 lymphocyte rolling in the intestinal microvasculature. Am J Pathol. 2005;167(6):1647–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ajuebor MN, et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol. 1999;162(3):1685–91.

    CAS  PubMed  Google Scholar 

  124. Nussler AK, et al. Leukocytes, the Janus cells in inflammatory disease. Langenbeck’s Arch Surg. 1999;384(2):222–32.

    Article  CAS  Google Scholar 

  125. Hegyi B, et al. Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochem Biophys Res Commun. 2012;419(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  126. Yanez R, et al. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res. 2010;316(19):3109–23.

    Article  CAS  PubMed  Google Scholar 

  127. Shinomiya S, et al. Regulation of TNFalpha and interleukin-10 production by prostaglandins I(2) and E(2): studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. Biochem Pharmacol. 2001;61(9):1153–60.

    Article  CAS  PubMed  Google Scholar 

  128. Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther. 2004;103(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  129. Kang JW, et al. Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci. 2012;13(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hill M, et al. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol. 2007;37(11):3054–62.

    Article  CAS  PubMed  Google Scholar 

  131. Kahler DJ, Mellor AL. T cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase. Handb Exp Pharmacol. 2009;188:165–96.

    Article  CAS  Google Scholar 

  132. Terness P, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196(4):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ryan JM, et al. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Frumento G, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, X., Yao, M., Xu, X. (2019). Advances in Stem Cell Research in Sepsis. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics