Skip to main content

Sepsis-Induced Lung Injury: The Mechanism and Treatment

  • Chapter
  • First Online:
Book cover Severe Trauma and Sepsis
  • 868 Accesses

Abstract

Sepsis-induced lung injury is one of the severest complications in sepsis. It belongs to the category of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). On the basis of both experimental and clinical studies, the pathogenesis of sepsis-induced lung injury includes the contributions of inflammatory response, vascular hyperpermeability, alveolar edema accumulation, and ventilator-induced lung injury. Survival has been increased with the strategy of protective ventilation based on a ventilator. However, specific effective pharmacologic therapies are still lacking, in spite of the tests of some anti-inflammatory and anticoagulant agents. As new therapeutic strategies, cell therapy and gene therapy are still in their infancy, and their potentials remain to be evaluated. Although a number of basic studies show that some traditional Chinese medicines can protect against ALI or ARDS, it still needs to be further verified by clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2(7511):319–23.

    Article  CAS  PubMed  Google Scholar 

  3. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.

    Article  CAS  PubMed  Google Scholar 

  4. Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.

    PubMed  Google Scholar 

  5. Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of ARDS using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016;193(1):52–9.

    Article  PubMed  Google Scholar 

  6. Calfee CS, Janz DR, Bernard GR, et al. Distinct molecular phenotypes of direct versus indirect ARDS in single and multicenter studies. Chest. 2015;147(6):1539–48.

    Article  PubMed  Google Scholar 

  7. Tejera P, Meyer NJ, Chen F, et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 2012;49(11):671–80.

    Article  CAS  PubMed  Google Scholar 

  8. Phua J, Badia JR, Adhikari NK, et al. Has mortality from acute respiratory distress syndrome decreased over time: a systematic review. Am J Respir Crit Care Med. 2009;179(3):220–7.

    Article  PubMed  Google Scholar 

  9. Vincent JL, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med. 2006;173(3):256–63.

    Article  PubMed  Google Scholar 

  10. Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, et al. Experimental models of sepsis and their clinical relevance. Shock. 2008;30(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  11. Parker SJ, Watkins PE. Experimental models of gram-negative sepsis. Br J Surg. 2001;88(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  12. Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch. 2017;469(1):135–47.

    Article  CAS  PubMed  Google Scholar 

  13. Henderson RB, Hobbs JAR, Mathies M, et al. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood. 2003;102(1):328–35.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Zhang H, Min D, et al. Sox9 activation is essential for the recovery of lung function after acute lung injury. Cell Physiol Biochem. 2015;37(3):1113–22.

    Article  CAS  PubMed  Google Scholar 

  15. Leung WS, Yang ML, Lee SS, et al. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway. Int Immunopharmacol. 2017;46:194–200.

    Article  CAS  PubMed  Google Scholar 

  16. Blondonnet R, Constantin JM, Sapin V, et al. A pathophysiologic approach to biomarkers in acute respiratory distress syndrome. Dis Markers. 2016;2016(21):1–20.

    Article  CAS  Google Scholar 

  17. Horowitz JC, Cui Z, Moore TA, et al. Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2006;290:415–25.

    Article  CAS  Google Scholar 

  18. Hu R, Cheng Y, Jing H, Wu H, et al. Erythropoietin promotes the protective properties of transplanted endothelial progenitor cells against acute lung injury via PI3K/Akt pathway. Shock. 2014;42(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y, Lou J, Mao YY, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury. Autophagy. 2016;12(12):2286–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gunther A, Mosavi P, Heinemann S. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia: comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161:454–62.

    Article  CAS  PubMed  Google Scholar 

  21. Day YJ, Chen KH, Chen YL, et al. Preactivated and disaggregated shape-changed platelets protected against acute respiratory distress syndrome complicated by sepsis through inflammation suppression. Shock. 2016;46(5):575–86.

    Article  CAS  PubMed  Google Scholar 

  22. Robert SM, Zhu H, Constantin G, et al. Complement inhibition decreases early fibrogenic events in the lung of septic baboons. J Cell Mol Med. 2015;19(11):2549–63.

    Article  CAS  Google Scholar 

  23. Cross LJM, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin. 2011;27(2):355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dowdy DW, Eid MP, Dennison CR, et al. Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med. 2006;32(8):1115–24.

    Article  PubMed  Google Scholar 

  25. Corada M, Mariotti M, Thurston G, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci. 1999;96:9815–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wessel F, Winderlich M, Holm M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol. 2014;15:223–30.

    Article  CAS  PubMed  Google Scholar 

  27. Schulte D, Kuppers V, Dartsch N, et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J. 2011;30:4157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sidibe A, Imhof BA. VE-cadherin phosphorylation decides: vascular permeability or diapedesis. Nat Immunol. 2014;15:215–7.

    Article  CAS  PubMed  Google Scholar 

  29. Broermann A, Winderlich M, Block H, et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF induced vascular permeability in vivo. J Exp Med. 2011;208:2393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Camerer E, Regard JB, Cornelissen I, et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest. 2009;119:1871–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Yang G, Zhu Y, et al. Relationship of Cx43 regulation of vascular permeability to osteopontin-tight junction protein pathway after sepsis in rats. Am J Physiol Regul Integr Comp Physiol. 2017;443:R1.

    Google Scholar 

  32. Dong R, Hu D, Yang Y, et al. EETs reduces LPS-induced hyperpermeability by targeting GRP78 mediated Src activation and subsequent Rho/ROCK signaling pathway. Oncotarget. 2017;8(31):50958–71.

    PubMed  PubMed Central  Google Scholar 

  33. Peters DM, Vadasz I, Wujak L, et al. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A. 2014;111:E374–83.

    Article  CAS  PubMed  Google Scholar 

  34. Roux J, McNicholas CM, Carles M, et al. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K dependent mechanism. FASEB J. 2013;27:1095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cui Y, Ding Y, Chen L, et al. Dexmedetomidine enhances human lung fluid clearance through improving alveolar sodium transport. Fundam Clin Pharmacol. 2017;31(4):429–37.

    Article  CAS  PubMed  Google Scholar 

  36. Frank JA, Pittet JF, Lee H, et al. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol. 2003;284:L791–8.

    Article  CAS  PubMed  Google Scholar 

  37. Eckle T, Grenz A, Laucher S, et al. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest. 2008;118:3301–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vadasz I, Sznajder J. Gas exchange disturbances regulate alveolar fluid clearance during acute lung injury. Front Cell Infect Microbiol. 2017;8:757–64.

    Google Scholar 

  39. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazzocchi LC, Vohwinkel CU, Mayer K, et al. TGF-β inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis and transcriptional downregulation of megalin. Am J Physiol Lung Cell Mol Physiol. 2017;313(5):L807–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med. 2014;189(11):1301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fanelli V, Mascia L, Puntorieri V, et al. Pulmonary atelectasis during low stretch ventilation: “open lung” versus “lung rest” strategy. Crit Care Med. 2009;37:1046–53.

    Article  PubMed  Google Scholar 

  44. Dolinay T, Himes B, Shumyatcher M, et al. Integrated stress response mediates epithelial injury in mechanical ventilation. Am J Respir Cell Mol Biol. 2017;57(2):193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imai Y, Parodo J, Kajikawa O, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.

    Article  PubMed  Google Scholar 

  46. Arndt U, Wennemuth G, Barth P, et al. Release of macrophage migration inhibitory factor and CXCL8/interleukin-8 from lung epithelial cells rendered necrotic by influenza A virus infection. J Virol. 2002;76:9298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chimenti L, Camprubí-Rimblas M, Guillamat-Prats R, et al. Nebulized heparin attenuates pulmonary coagulopathy and inflammation through alveolar macrophages in a rat model of acute lung injury. Thromb Haemost. 2017;117(11):2125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bosmann M, Ward PA. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv Exp Med Biol. 2012;946:147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness. Chest. 2011;139(3):658–68.

    Article  PubMed  Google Scholar 

  50. Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol. 2014;306(3):L217–30.

    Article  CAS  PubMed  Google Scholar 

  51. Rubenfeld GD. Confronting the frustrations of negative clinical trials in acute respiratory distress syndrome. Ann Am Thorac Soc. 2015;12(1):S58–63.

    Article  PubMed  Google Scholar 

  52. McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–33.

    Article  CAS  PubMed  Google Scholar 

  53. Leissinger M, Kulkarni R, Zemans RL, et al. Investigating the role of nucleotide-binding oligomerization domain-like receptors in bacterial lung infection. Am J Respir Crit Care Med. 2014;189(12):1461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  55. Ray NB, Durairaj L, Chen BB, et al. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med. 2010;16(10):1120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi D, Wang D, Zhang C, et al. Vaspin protects against LPS-induced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK-3β pathway. Int J Mol Med. 2017;40:1803–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Simmons JD, Lee YL, Mulekar S, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258(4):591–6.

    PubMed  Google Scholar 

  58. Chen S, Zuo X, Yang M, et al. Severe multiple organ injury in HSF1 knockout mice induced by lipopolysaccharide is associated with an increase in neutrophil infiltration and surface expression of adhesion molecules. J Leukoc Biol. 2012;92(4):851–7.

    Article  CAS  PubMed  Google Scholar 

  59. Vieillard-Baron A, Matthay M, Teboul JL, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42(5):739–49.

    Article  CAS  PubMed  Google Scholar 

  60. Chiumello D, Brochard L, Marini JJ, et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Crit Care. 2017;21(1):240–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lista G, Castoldi F, Fontana P, et al. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol. 2006;41(4):357–63.

    Article  PubMed  Google Scholar 

  62. Sahetya SK, Mancebo J, Brower RG. 50 years of research in ARDS. Tidal volume selection in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;08:1629–50.

    Google Scholar 

  63. Frank JA, Parsons PE, Matthay MA. Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies. Chest. 2006;130(6):1906–14.

    Article  CAS  PubMed  Google Scholar 

  64. Goligher EC, Kavanagh BP, Rubenfeld GD, et al. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med. 2014;190(1):70–6.

    Article  PubMed  Google Scholar 

  65. Ogura H, Gando S, Iba T, et al. SIRS-associated coagulopathy and organ dysfunction in critically ill patients with thrombocytopenia. Shock. 2007;28(4):411–7.

    Article  PubMed  Google Scholar 

  66. Dixon B, Schultz MJ, Smith R, et al. Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial. Crit Care. 2010;14:180.

    Article  Google Scholar 

  67. Erlich JM, Talmor DS, Cartin-Ceba R, et al. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139:289–95.

    Article  PubMed  Google Scholar 

  68. Hess R, Wujak L, Hesse C, et al. Coagulation factor XII regulates inflammatory responses in human lungs. Thromb Haemost. 2017;10:1896–907.

    Article  Google Scholar 

  69. Igonin AA, Protsenko DN, Galstyan GM, et al. C1-esterase inhibitor infusion increases survival rates for patients with sepsis. Crit Care Med. 2012;40:770–7.

    Article  CAS  PubMed  Google Scholar 

  70. Tomoharu M, Ali KA, Shinichi N, et al. A three-phase approach for the early identification of acute lung injury induced by severe sepsis. In Vivo. 2016;30:341–50.

    Google Scholar 

  71. Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–50.

    Article  CAS  PubMed  Google Scholar 

  72. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553–65.

    Article  PubMed  Google Scholar 

  73. Hooper RG, Kearl RA. Established ARDS treated with a sustained course of adrenocorticosteroids. Chest. 1990;97:138–43.

    Article  CAS  PubMed  Google Scholar 

  74. Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.

    Article  CAS  PubMed  Google Scholar 

  75. Iwata K, Doi A, Ohji G, et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis. Intern Med. 2010;49:2423–32.

    Article  PubMed  Google Scholar 

  76. Orihara K, Matsuda A. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines. Int J Chron Obstruct Pulmon Dis. 2008;3(4):619–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takano Y, Mitsuhashi H, Ueno K. Alpha, 25-Dihydroxy vitamin D(3) inhibits neutrophil recruitment in hamster model of acute lung injury. Steroids. 2011;76:1305–9.

    Article  CAS  PubMed  Google Scholar 

  78. Parekh D, Dancer RC, Lax S, et al. Vitamin D to prevent acute lung injury following oesophagectomy (VINDALOO): study protocol for a randomised placebo controlled trial. Trials. 2013;14:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sadowitzaa B, Royaa S, Gattobb LA. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Rev Anti Infect Ther. 2011;9(12):1169–78.

    Article  Google Scholar 

  80. Bein T, Grasso S, Moerer O, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42(5):699–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28 day international study. JAMA. 2002;287:345–55.

    Article  PubMed  Google Scholar 

  82. Frank JA, Gutierrez JA, Jones KD, et al. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–9.

    Article  PubMed  Google Scholar 

  83. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33:1–6.

    Article  CAS  PubMed  Google Scholar 

  84. Pepe PE, Hudson LD, Carrico JC. Early application of positive end-expiratory pressure in patients at risk of adult respiratory distress syndrome. N Engl J Med. 1984;311:281–6.

    Article  CAS  PubMed  Google Scholar 

  85. Crotti S, Mascheroni D, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164:131–40.

    Article  CAS  PubMed  Google Scholar 

  86. Daoud EG, Farag HL, Chatburn RL, et al. Airway pressure release ventilation: what do we know? Respir Care. 2012;57(2):282–92.

    PubMed  Google Scholar 

  87. Marcelo BP, Amato MD, Maureen O, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.

    Article  CAS  Google Scholar 

  88. Guerin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  PubMed  Google Scholar 

  89. Cressoni M, Chiumello D, Algieri I, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43(5):603–11.

    Article  PubMed  Google Scholar 

  90. Sklar MC, Fan E, Goligher EC. High-frequency oscillatory ventilation in adults with ards: past, present, and future. Chest. 2017;3(17):31185–6.

    Google Scholar 

  91. Umbrello M, Marino A, Chiumello D. Tidal volume in acute respiratory distress syndrome: how best to select it. Ann Transl Med. 2017;5(14):287.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Del Sorbo L, Cypel M, Fan E, et al. Extracorporeal life support for adults with severe acute respiratory failure. Lancet Respir Med. 2014;2(2):154–64.

    Article  PubMed  Google Scholar 

  93. Abrams D, Brodie D. Extracorporeal membrane oxygenation for adult respiratory failure: 2017 update. Chest. 2017;152(3):639–49.

    Article  PubMed  Google Scholar 

  94. Vaquer S, de Haro C, Peruga P, et al. Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann Intensive Care. 2017;7(1):51–64.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leligdowicz A, Fan E. Extracorporeal life support for severe acute respiratory distress syndrome. Curr Opin Crit Care. 2015;21(1):13–9.

    Article  PubMed  Google Scholar 

  96. Combes A, Pesenti A, Ranieri VM. Fifty years of research in ARDS. Is extracorporeal circulation the future of acute respiratory distress syndrome management. Am J Respir Crit Care Med. 2017;195(9):1161–70.

    Article  PubMed  Google Scholar 

  97. Ragaller M, Bleyl JU, Koch T, et al. From isoflurane to perfluorohexane? Perfluorocarbons--therapeutic strategies in acute lung failure. Anaesthesist. 2000;49(4):291–301.

    Article  CAS  PubMed  Google Scholar 

  98. Levy SD, Alladina JW, Hibbert KA, et al. High-flow oxygen therapy and other inhaled therapies in intensive care units. Lancet. 2016;387(10030):1867–78.

    Article  PubMed  Google Scholar 

  99. Beitler JR, Goligher EC, Schmidt M, et al. Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med. 2016;42(5):756–67.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hashimoto S, Sanui M, Egi M, et al. The clinical practice guideline for the management of ARDS in Japan. J Intensive Care. 2017;5:50–82.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang L, Bastarache JA, Wickersham N, et al. Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am J Respir Cell Mol Biol. 2007;36:497–503.

    Article  CAS  PubMed  Google Scholar 

  102. Robriquet L, Collet F, Tournoys A, et al. Intravenous administration of activated protein C in pseudomonas induced lung injury: impact on lung fluid balance and the inflammatory response. Respir Res. 2006;7:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Healy LD, Puy C, Fernández JA, et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem. 2017;292(21):8616–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cornet AD, Groeneveld AB, Hofstra JJ, et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: a randomized clinical trial. PLoS One. 2014;9(3):90983–94.

    Article  CAS  Google Scholar 

  105. Christiaans SC, Wagener BM, Esmon CT, et al. Protein C and acute inflammation: a clinical and biological perspective. Am J Physiol Lung Cell Mol Physiol. 2013;305(7):L455–66.

    Article  CAS  PubMed  Google Scholar 

  106. Ma J, Bai J. Protective effects of heparin on endothelial cells in sepsis. Int J Clin Exp Med. 2015;8(4):5547–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Horie S, Masterson C, Devaney J, et al. Stem cell therapy for acute respiratory distress syndrome: a promising future. Curr Opin Crit Care. 2016;22(1):14–20.

    Article  PubMed  Google Scholar 

  108. Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson CL, Soeder Y, Dahlke MH. Concise review: mesenchymal stromal cell-based approaches for the treatment of acute respiratory distress and sepsis syndromes. Stem Cells Transl Med. 2017;6(4):1141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Matthay MA, Goolaerts A, Howard JP, et al. Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med. 2010;38(10):569–73.

    Article  Google Scholar 

  111. Lee JW, Krasnodembskaya A, McKenna DH, et al. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med. 2013;187:751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Keane C, Jerkic M, Laffey JG. Stem cell-based therapies for sepsis. Anesthesiology. 2017;127(6):1017–34.

    Article  PubMed  Google Scholar 

  113. Horák J, Nalos L, Martínková V, et al. Mesenchymal stem cells in sepsis and associated organ dysfunction: a promising future or blind alley? Stem Cells Int. 2017;2017:1–10.

    Article  CAS  Google Scholar 

  114. Zheng G, Huang L, Tong H, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3:24–32.

    Article  PubMed  Google Scholar 

  116. Liu KD, Wilson JG, Zhuo H, et al. Design and implementation of the START (STem cells for ARDS treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Ann Intensive Care. 2014;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhou J, Wu Y, Henderson F, et al. Adenoviral gene transfer of a mutant surfactant enzyme ameliorates pseudomonas-induced lung injury. Gene Ther. 2006;13:974–85.

    Article  CAS  PubMed  Google Scholar 

  118. Reiss LK, Schuppert A, Uhlig S. Inflammatory processes during acute respiratory distress syndrome: a complex system. Curr Opin Crit Care. 2017;23:1–9.

    Article  Google Scholar 

  119. Huang Y, Sauthoff H, Herscovici P, et al. Angiopoietin-1 increases survival and reduces the development of lung edema induced by endotoxin administration in a murine model of acute lung injury. Crit Care Med. 2008;36:262–7.

    Article  CAS  PubMed  Google Scholar 

  120. Bromberg Z, Raj N, Goloubinoff P, et al. Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis-induced model of acute respiratory distress syndrome. Crit Care Med. 2008;36:246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li Y, Dong J, Wu M. Human Apo A-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur J Pharmacol. 2008;590:417–22.

    Article  CAS  PubMed  Google Scholar 

  122. Shu Q, Shi Z, Zhao Z, et al. Protection against Pseudomonas aeruginosa pneumonia and sepsis-induced lung injury by overexpression of β-defensin-2 in rats. Shock. 2006;26:365–71.

    Article  CAS  PubMed  Google Scholar 

  123. Han J, Lu X, Zou L, et al. E-prostanoid 2 receptor overexpression promoted mesenchymal stem cell attenuated lung injury. Hum Gene Ther. 2016;27:1–10.

    Article  CAS  Google Scholar 

  124. Mei SH, Dos Santos CC, Stewart DJ. Advances in stem cell and cell-based gene therapy approaches for experimental acute lung injury: a review of preclinical studies. Hum Gene Ther. 2016;27(10):802–12.

    Article  CAS  PubMed  Google Scholar 

  125. Chen G, Xu Y, Jing J, et al. The anti-sepsis activity of the components of Huanglian Jiedu Decoction with high lipid A-binding affinity. Int Immunopharmacol. 2017;46:87–96.

    Article  CAS  PubMed  Google Scholar 

  126. Ding XM, Pan L, Wang Y, et al. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1- CX3CR1 axis and NF-κB pathway in CX3CL1-knockout mice. Int J Mol Med. 2016;37(3):703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang K-L, Chen C-S, Hsu C-W, Li M-H, Chang H, Tsai S-H, Chu S-J. Therapeutic effects of baicalin on lipopolysaccharide-induced acute lung injury in rats. Am J Chin Med. 2008;36(02):301–11.

    Article  CAS  PubMed  Google Scholar 

  128. Gu XH, Xu LJ, Liu ZQ, et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res. 2016;311:309–21.

    Article  CAS  PubMed  Google Scholar 

  129. Tsai CL, Lin YC, Wang HM, et al. Baicalein, an active component of scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J Ethnopharmacol. 2014;153(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  130. Wang L, Chen J, Wang B, et al. Protective effect of quercetin on lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammatory cell influx. Exp Biol Med. 2014;239(12):1653–62.

    Article  CAS  Google Scholar 

  131. Takashima K, Matsushima M, Hashimoto K, et al. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir Res. 2014;15(1):150–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Huang R, Zhong T, Wu H. Experimental research Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch Med Sci. 2015;11(2):427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumari A, Tyagi N, Dash D, et al. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2015;38(3):1103–12.

    Article  CAS  PubMed  Google Scholar 

  134. Xin W, Zhang L, Fan H, et al. Escin attenuates acute lung injury induced by endotoxin in mice. Eur J Pharm Sci. 2011;42(1–2):73–80.

    Article  CAS  PubMed  Google Scholar 

  135. Qiu J, Yu L, Zhang X, et al. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway. Int Immunopharmacol. 2015;26(1):181–7.

    Article  CAS  PubMed  Google Scholar 

  136. Guan S, Xiong Y, Song B, et al. Protective effects of salidroside from Rhodiola rosea on LPS-induced acute lung injury in mice. Immunopharmacol Immunotoxicol. 2012;34(4):667–72.

    Article  CAS  PubMed  Google Scholar 

  137. Lu R, Wu Y, Guo G, et al. Salidroside protects lipopolysaccharide-induced acute lung injury in mice. Dose Response. 2016;14(4):1–5.

    Article  CAS  Google Scholar 

  138. Li MH, Kothandan G, Cho SJ, et al. Magnolol inhibits LPS-induced NF-κ B/Rel activation by blocking p38 kinase in murine macrophages. Korean J Physiol Pharmacol. 2010;14(6):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fu Y, Liu B, Feng X, et al. The effect of magnolol on the toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2012;689(1):255–61.

    CAS  Google Scholar 

  140. Zhou H, Bian D, Jiao X, et al. Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res. 2011;60(10):981–90.

    Article  CAS  PubMed  Google Scholar 

  141. Cao Q, Jing C, Tang X, et al. Protective effect of resveratrol on acute lung injury induced by lipopolysaccharide in mice. Anat Rec. 2011;294(3):527–32.

    Article  CAS  Google Scholar 

  142. Li T, Zhang J, Feng J, et al. Resveratrol reduces acute lung injury in a LPS induced sepsis mouse model via activation of Sirt1. Mol Med Rep. 2013;7(6):1889–95.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang Z, Chen N, Liu JB, et al. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88 dependent Toll-like receptor 4 signaling pathway. Mol Med Rep. 2014;10(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  144. Bae HB, Li M, Kim JP, et al. The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model. Inflammation. 2010;33(2):82–91.

    Article  CAS  PubMed  Google Scholar 

  145. Liu W, Dong M, Bo L, Li C, Liu Q, Li Y, Ma L, Xie Y, Fu E, Mu D, Pan L, Jin F, Li Z. Epigallocatechin-3-gallate ameliorates seawater aspiration-induced acute lung injury via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. Mediators Inflamm. 2014;2014:1–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, G., Xiao, X. (2019). Sepsis-Induced Lung Injury: The Mechanism and Treatment. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics