Skip to main content

Secondary Infection in Sepsis: Clinical Significance, Immune Mechanism, and Therapy Strategies

  • Chapter
  • First Online:
Severe Trauma and Sepsis
  • 780 Accesses

Abstract

Sepsis is a common and main cause of morbidity and mortality in intensive care units and emergency departments. Recent evidence illustrated that patients who are suffering from sepsis undergo a prolonged immunosuppressive phase. As a consequence, many septic patients are at risk for secondary infection which is considered to be the major reason for the high mortality of this disease nowadays. In this paper, we discuss the clinical significance of secondary infection and its potential immune mechanisms. In addition, the conventional measures and novel immunomodulatory strategies are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311(13):1308–16.

    Article  CAS  PubMed  Google Scholar 

  2. Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Walkey AJ, Wiener RS, Lindenauer PK. Utilization patterns and outcomes associated with central venous catheter in septic shock: a population-based study. Crit Care Med. 2013;41(6):1450–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goto T, Yoshida K, Tsugawa Y, Filbin MR, Camargo CA Jr, Hasegawa K. Mortality trends in U.S. adults with septic shock, 2005–2011: a serial cross-sectional analysis of nationally-representative data. BMC Infect Dis. 2016;16:294.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao GJ, Li D, Zhao Q, Song JX, et al. Incidence, risk factors and impact on outcomes of secondary infection in patients with septic shock: an 8-year retrospective study. Sci Rep. 2016;6:38361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Otto GP, Sossdorf M, Claus RA, Rödel J, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Walton AH, Muenzer JT, Rasche D, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9(2):e98819.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daviaud F, Grimaldi D, Dechartres A, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest. 2016;126(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34(3):730–7.

    Article  PubMed  Google Scholar 

  12. Delano MJ, Thayer T, Gabrilovich S, et al. Sepsis induces early alterations in innate immunity that impact mortality to secondary infection. J Immunol. 2011;186(1):195–202.

    Article  CAS  PubMed  Google Scholar 

  13. López-Collazo E, del Fresno C. Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences. Crit Care. 2013;17(6):242.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lekkou A, Karakantza M, Mouzaki A, et al. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin Diagn Lab Immunol. 2004;11(1):161–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lukaszewicz AC, Grienay M, Resche-Rigon M, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. 2009;37(10):2746–52.

    CAS  PubMed  Google Scholar 

  16. Deng JC, Cheng G, Newstead MW, et al. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest. 2006;116(9):2532–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan X, Liu Z, Jin H, Yan J, Liang HP. Alterations of dendritic cells in sepsis: featured role in immunoparalysis. Biomed Res Int. 2015;2015:903720.

    PubMed  PubMed Central  Google Scholar 

  18. Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interf Cytokine Res. 2014;34(1):2–15.

    Article  CAS  Google Scholar 

  19. Pène F, Zuber B, Courtine E, Rousseau C, et al. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol. 2008;181(12):8513–20.

    Article  PubMed  Google Scholar 

  20. Cabrera-Perez J, Condotta SA, Badovinac VP, et al. Impact of sepsis on CD4 T cell immunity. J Leukoc Biol. 2014;96(5):767–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhao GJ, Yao YM, Lu ZQ, et al. Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine. 2012;59(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  22. Arens C, Bajwa SA, Koch C, et al. Sepsis-induced long-term immune paralysis—results of a descriptive, explorative study. Crit Care. 2016;20:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monneret G, Debard AL, Venet F, et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31(7):2068–71.

    Article  PubMed  Google Scholar 

  26. Cavassani KA, Carson WF 4th, Moreira AP, Wen H, Schaller MA, Ishii M, Lindell DM, Dou Y, Lukacs NW, Keshamouni VG, Hogaboam CM, Kunkel SL. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood. 2010;115(22):4403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang LF, Yao YM, Dong N, Yu Y, He LX, Sheng ZY. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit Care. 2010;14(1):R3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tatura R, Zeschnigk M, Hansen W, et al. Relevance of Foxp3+ regulatory T cells for early and late phases of murine sepsis. Immunology. 2015;146(1):144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537–9.

    Article  CAS  PubMed  Google Scholar 

  31. Browne EP. Regulation of B-cell responses by toll-like receptors. Immunology. 2012;136(4):370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12.

    Article  CAS  PubMed  Google Scholar 

  33. Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, et al. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med. 2011;208(8):1673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monserrat J, de Pablo R, Diaz-Martín D, et al. Early alterations of B cells in patients with septic shock. Crit Care. 2013;17(3):R105.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suzuki K, Inoue S, Kametani Y, et al. Reduced Immunocompetent B cells and increased secondary infection in elderly patients with severe Sepsis. Shock. 2016;46(3):270–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mehta Y, Gupta A, Todi S, et al. Guidelines for prevention of hospital acquired infections. Indian J Crit Care Med. 2014;18(3):149–63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669–84.

    CAS  PubMed  Google Scholar 

  39. Netea MG, van Tits LJ, Curfs JH, et al. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol. 1999;163(3):1498–505.

    CAS  PubMed  Google Scholar 

  40. Song Z, Zhang J, Zhang X, et al. Interleukin 4 deficiency reverses development of secondary Pseudomonas aeruginosa pneumonia during sepsis-associated immunosuppression. J Infect Dis. 2015;211(10):1616–27.

    Article  CAS  PubMed  Google Scholar 

  41. Steinhauser ML, Hogaboam CM, Kunkel SL, et al. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol. 1999;162(1):392–9.

    CAS  PubMed  Google Scholar 

  42. Cao J, Xu F, Lin S, et al. IL-27 controls sepsis-induced impairment of lung antibacterial host defence. Thorax. 2014;69(10):926–37.

    Article  PubMed  Google Scholar 

  43. Namen AE, Lupton S, Hjerrild K, et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988;333(6173):571–3.

    Article  CAS  PubMed  Google Scholar 

  44. Hand TW, Morre M, Kaech SM. Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc Natl Acad Sci U S A. 2007;104(28):11730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol. 2012;24(3):198–208.

    Article  CAS  PubMed  Google Scholar 

  46. Sheikh V, Porter BO, DerSimonian R, Kovacs SB, et al. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood. 2016;127(8):977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Audigé A, Hofer U, Dittmer U, et al. Evaluation of the immunomodulatory and antiviral effects of the cytokine combination IFN-α and IL-7 in the lymphocytic choriomeningitis virus and friend retrovirus mouse infection models. Viral Immunol. 2011;24(5):375–85.

    Article  PubMed  CAS  Google Scholar 

  48. Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.

    Article  CAS  PubMed  Google Scholar 

  49. Shindo Y, Fuchs AG, Davis CG, et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J Leukoc Biol. 2017;101(2):543–54.

    Article  CAS  PubMed  Google Scholar 

  50. Inoue S, Unsinger J, Davis CG, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184(3):1401–9.

    Article  CAS  PubMed  Google Scholar 

  51. Waldmann TA, Lugli E, Roederer M, et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood. 2011;117(18):4787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wege AK, Weber F, Kroemer A, et al. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget. 2017;8(2):2731–44.

    Google Scholar 

  53. Guo Y, Luan L, Rabacal W, et al. IL-15 superagonist-mediated immunotoxicity: role of NK cells and IFN-γ. J Immunol. 2015;195(5):2353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front Oncol. 2015;4:385.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shao R, Fang Y, Yu H, et al. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit Care. 2016;20(1):124.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Li J, Lou J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15(1):R70.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chang K, Svabek C, Vazquez-Guillamet C, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Zhou Y, Lou J, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Murphy KM, Nelson CA, Sedý JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol. 2006;6(9):671–81.

    Article  CAS  PubMed  Google Scholar 

  63. Shubin NJ, Monaghan SF, Heffernan DS, et al. B and T lymphocyte attenuator expression on CD4+ T-cells associates with sepsis and subsequent infections in ICU patients. Crit Care. 2013;17(6):R276.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shao R, Li CS, Fang Y, et al. Low B and T lymphocyte attenuator expression on CD4+ T cells in the early stage of sepsis is associated with the severity and mortality of septic patients: a prospective cohort study. Crit Care. 2015;19:308.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ren F, Li J, Jiang X, et al. Plasma soluble Tim-3 emerges as an inhibitor in sepsis: sepsis contrary to membrane Tim-3 on monocytes. Tissue Antigens. 2015;86(5):325–32.

    Article  CAS  PubMed  Google Scholar 

  66. Nowak EC, Lines JL, Varn FS, et al. Immunoregulatory functions of VISTA. Immunol Rev. 2017;276(1):66–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hotchkiss RS, McConnell KW, Bullok K, et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J Immunol. 2006;176(9):5471–7.

    Article  CAS  PubMed  Google Scholar 

  69. Liu YC, Yao FH, Chai YF, et al. Xuebijing injection promotes M2 polarization of macrophages and improves survival rate in septic mice. Evid Based Complement Alternat Med. 2015;2015:352642.

    PubMed  PubMed Central  Google Scholar 

  70. Liu QY, Yao YM, Yu Y, et al. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+CD25(high) T cells. PLoS One. 2011;6(6):e19811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen W, Lian J, Ye JJ, et al. Ethyl pyruvate reverses development of Pseudomonas aeruginosa pneumonia during sepsis-induced immunosuppression. Int Immunopharmacol. 2017;52:61–9.

    Article  CAS  PubMed  Google Scholar 

  72. Car BD, Eng VM, Schnyder B, et al. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med. 1994;179(5):1437–44.

    Article  CAS  PubMed  Google Scholar 

  73. Romero CR, Herzig DS, Etogo A, et al. The role of interferon-γ in the pathogenesis of acute intra-abdominal sepsis. J Leukoc Biol. 2010;88(4):725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335(26):1956–61.

    Article  CAS  PubMed  Google Scholar 

  75. Döcke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.

    Article  PubMed  Google Scholar 

  76. Nakos G, Malamou-Mitsi VD, Lachana A, et al. Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med. 2002;30(7):1488–94.

    Article  CAS  PubMed  Google Scholar 

  77. Barreda DR, Hanington PC, Belosevic M. Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol. 2004;28(5):509–54.

    Article  CAS  PubMed  Google Scholar 

  78. Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.

    Article  CAS  PubMed  Google Scholar 

  79. Orozco H, Arch J, Medina-Franco H, et al. Molgramostim (GM-CSF) associated with antibiotic treatment in nontraumatic abdominal sepsis: a randomized, double-blind, placebo-controlled clinical trial. Arch Surg. 2006;141(2):150–3.

    Article  CAS  PubMed  Google Scholar 

  80. Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.

    Article  CAS  PubMed  Google Scholar 

  81. Bo L, Wang F, Zhu J, et al. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit Care. 2011;15(1):R58.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Romani L, Bistoni F, Montagnoli C, et al. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann N Y Acad Sci. 2007;1112:326–38.

    Article  CAS  PubMed  Google Scholar 

  83. Romani L, Bistoni F, Perruccio K, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood. 2006;108(7):2265–74.

    Article  CAS  PubMed  Google Scholar 

  84. You J, Zhuang L, Cheng HY, et al. Efficacy of thymosin alpha-1 and interferon alpha in treatment of chronic viral hepatitis B: a randomized controlled study. World J Gastroenterol. 2006;12(41):6715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Li W, Niu C, et al. Thymosin alpha 1 is associated with improved cellular immunity and reduced infection rate in severe acute pancreatitis patients in a double-blind randomized control study. Inflammation. 2011;34(3):198–202.

    Article  CAS  PubMed  Google Scholar 

  86. Garaci E, Pica F, Rasi G, et al. Thymosin alpha 1 in the treatment of cancer: from basic research to clinical application. Int J Immunopharmacol. 2000;22(12):1067–76.

    Article  CAS  PubMed  Google Scholar 

  87. Wan J, Shan Y, Shan H, et al. Thymosin-alpha1 promotes the apoptosis of regulatory T cells and survival rate in septic mice. Front Biosci (Landmark Ed). 2011;16:3004–13.

    Article  CAS  Google Scholar 

  88. Wu J, Zhou L, Liu J, et al. The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit Care. 2013;17(1):R8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, Zq. (2019). Secondary Infection in Sepsis: Clinical Significance, Immune Mechanism, and Therapy Strategies. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics