Fatigue Reliability Analysis for Welded Details

  • Yang DengEmail author
  • Aiqun Li


Orthotropic steel decks (OSDs) have been widely adopted for long-span bridges due to its notable advantages, such as light weight, high strength and durability, and rapid construction (Wolchuk in J Struct Eng 116(1):75–84, 1990) [1], (Deng et al. Struct Control Health Monit 22(11):1343–1358, 2015) [2]. However, various types of cracking in the OSDs have been reported owing to lack of knowledge in its fatigue characteristics, design defects, and harsh loading conditions such as heavy-duty vehicles and high-density traffic volumes.


  1. 1.
    Wolchuk R. Lessons from weld cracks in orthotropic decks on three European bridges. J Struct Eng. 1990;116(1):75–84.CrossRefGoogle Scholar
  2. 2.
    Deng Y, Liu Y, Feng DM, Li AQ. Investigation of fatigue performance of welded details in long-span steel bridges using long-term monitoring strain data. Struct Control Health Monit. 2015;22(11):1343–58.CrossRefGoogle Scholar
  3. 3.
    Xiao ZG, Yamada K, Inoue J, Yamaguchi K. Fatigue cracks in longitudinal ribs of steel orthotropic deck. Int J Fatigue. 2006;28(4):409–16.CrossRefGoogle Scholar
  4. 4.
    Fisher JW, Barsom JM. Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone bridge. J Bridge Eng. 2016;21(3):04015065.CrossRefGoogle Scholar
  5. 5.
    British Standards Institution. Eurocode 3: design of steel structures—Part 1–9. Fatigue;2005.Google Scholar
  6. 6.
    Zhang QH, Cui C, Bu YZ, Liu YM, Ye HW. Fatigue tests and fatigue assessment approaches for rib-to-diaphragm in steel orthotropic decks. J Constr Steel Res. 2015;114:110–8.CrossRefGoogle Scholar
  7. 7.
    Kainuma S, Yanga M, Jeong YS, Inokuchi S, Kawabata A, Uchida D. Experiment on fatigue behavior of rib-to-deck weld root in orthotropic steel decks. J Constr Steel Res 2016;119:113–22.CrossRefGoogle Scholar
  8. 8.
    Guo T, Li AQ, Li JH. Fatigue life prediction of welded joints in orthotropic steel decks considering temperature effect and increasing traffic flow. Struct Health Monit Int J. 2008;7(3):189–202.CrossRefGoogle Scholar
  9. 9.
    De Freitas ST, Kolstein H, Bijlaard F. Structural monitoring of a strengthened orthotropic steel bridge deck using strain data. Struct Health Monit Int J. 2012;11(5):558–76.CrossRefGoogle Scholar
  10. 10.
    Guo T, Liu ZX, Zhu JS. Fatigue reliability assessment of orthotropic steel bridge decks based on probabilistic multi-scale finite element analysis. Adv Steel Const. 2015;11(3):334–46.Google Scholar
  11. 11.
    Liu Y, Zhang H, Liu Y, Deng Y, Jiang N, Lu N. Fatigue reliability assessment for orthotropic steel deck details under traffic flow and temperature loading. Eng Fail Anal. 2017;71:179–94.CrossRefGoogle Scholar
  12. 12.
    Frangopol DM, Strauss A, Kim S. Bridge reliability assessment based on monitoring. J Bridge Eng. 2008;13(3):258–70.CrossRefGoogle Scholar
  13. 13.
    Liu M, Frangopol DM, Kwon K. Fatigue reliability assessment of retrofitted steel bridges integrating monitored data. Struct Saf. 2010;32(1):77–89.CrossRefGoogle Scholar
  14. 14.
    Wirsching PH. Fatigue reliability for offshore structures. J Struct Eng ASCE. 1984;110(10):2340–56.CrossRefGoogle Scholar
  15. 15.
    Zhao ZW, Haldar A, Breen FL. Fatigue-reliability evaluation of steel bridges. J Struct Eng ASCE. 1994;120(5):1608–23.CrossRefGoogle Scholar
  16. 16.
    Kwon K, Frangopol DM. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. Int J Fatigue. 2010;32(8):1221–32.CrossRefGoogle Scholar
  17. 17.
    Guo T, Chen YW. Field stress/displacement monitoring and fatigue reliability assessment of retrofitted steel bridge details. Eng Fail Anal. 2011;18(1):354–63.CrossRefGoogle Scholar
  18. 18.
    Deng Y, Ding YL, Li AQ, Zhou GD. Fatigue reliability assessment for bridge welded details using long-term monitoring data. Sci China Technol Sci. 2011;54(12):3371–81.CrossRefGoogle Scholar
  19. 19.
    Ni YQ, Ye XW, Ko JM. Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application. J Struct Eng. 2010;136(12):1563–73.CrossRefGoogle Scholar
  20. 20.
    Xia HW, Ni YQ, Wong KY, Ko JM. Reliability-based condition assessment of in-service bridges using mixture distribution models. Comput Struct. 2012;106:204–13.CrossRefGoogle Scholar
  21. 21.
    Titterington DM, Smith AFM, Makov HE. Statistical analysis of finite mixture distributions. Chichester: Wiley; 1985.zbMATHGoogle Scholar
  22. 22.
    Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological). 1977;39(1):1–38.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nieslony A. Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech Syst Signal Process. 2009;23(8):2712–21.CrossRefGoogle Scholar
  26. 26.
    International Organization for Standardization. ISO 2394: general principles on reliability for structures: 1996.Google Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Future Urban DesignBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations