Fatigue Monitoring of Welded Details

  • Yang DengEmail author
  • Aiqun Li


The ASCE Committee on Fatigue and Fracture Reliability reported that 80%–90% of failures in steel structures are related to fatigue and fracture (ASCE Committee in J Struct Div ASCE 108(1):3–88, 1982) [1], (Byers et al. in J Struct Eng ASCE 123(3):277–285, 1997) [2]. During the operational period, bridge structures are subjected to millions of cyclic loadings caused by live traffic loads, resulting in the fatigue damage and fracture taken place in the critical components of steel bridges.


  1. 1.
    ASCE Committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division. Fatigue reliability 1–4. J Struct Div ASCE. 1982;108(1):3–88.Google Scholar
  2. 2.
    Byers WG, Marley MJ, Mohammadi J, Nielsen RJ, Sarkani S. Fatigue reliability reassessment applications: state-of-the-art paper. J Struct Eng ASCE. 1997;123(3):277–85.CrossRefGoogle Scholar
  3. 3.
    Tsakopoulos PA, Fisher JW. Full-scale fatigue tests of steel orthotropic decks for the Williamsburg Bridge. J Bridge Eng. 2003;8(5):323–33.CrossRefGoogle Scholar
  4. 4.
    Connor RJ, Fisher JW. Consistent approach to calculating stresses for fatigue design of welded rib-to-web connections in steel orthotropic bridge decks. J Bridge Eng. 2006;11(5):517–25.CrossRefGoogle Scholar
  5. 5.
    MacDougall C, Green MF, Shillinglaw S. Fatigue damage of steel bridges due to dynamic vehicle loads. J Bridge Eng. 2006;11(3):320–8.CrossRefGoogle Scholar
  6. 6.
    Mori T, Lee HH, Kyung KS. Fatigue life estimation parameter for short and medium span steel highway girder bridges. Eng Struct. 2007;29(10):2762–74.CrossRefGoogle Scholar
  7. 7.
    Xiao ZG, Yamada K, Ya S, Zhao XL. Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks. Int J Fatigue. 2008;30(8):1387–97.CrossRefGoogle Scholar
  8. 8.
    Pipinato A, Pellegrino C, Modena C. Fatigue assessment of highway steel bridges in presence of seismic loading. Eng Struct. 2011;33(1):202–9.CrossRefGoogle Scholar
  9. 9.
    Guo T, Frangopol DM, Chen Y. Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput Struct. 2012;112–113(4):245–57.CrossRefGoogle Scholar
  10. 10.
    Basso P, Casciati S, Faravelli L. Fatigue reliability assessment of a historic railway bridge designed by Gustave Eiffel. Struct Infrastruct Eng. 2015;11(1):27–37.CrossRefGoogle Scholar
  11. 11.
    DeWolf JT, Lauzon RG, Culmo MP. Monitoring bridge performance. Struct Health Monit Int J. 2002;1(2):129–38.CrossRefGoogle Scholar
  12. 12.
    Ko JM, Ni YQ. Technology development in structural health monitoring of large-scale bridge. Eng Struct. 2005;27(12):1715–25.CrossRefGoogle Scholar
  13. 13.
    Sartor RR, Culmo MP, DeWolf JT. Short-term strain monitoring of bridge structures. J Bridge Eng. 1999;4(3):157–64.CrossRefGoogle Scholar
  14. 14.
    Li ZX, Chan THT, Ko JM. Fatigue analysis and life prediction of bridges with structural health monitoring data—Part I: methodology and strategy. Int J Fatigue. 2001;23(1):45–53.CrossRefGoogle Scholar
  15. 15.
    Chan THT, Li ZX, Ko JM. Fatigue analysis and life prediction of bridges with structural health monitoring data—Part II: applications. Int J Fatigue. 2001;23(1):55–63.CrossRefGoogle Scholar
  16. 16.
    Li ZX, Chan THT, Zheng R. Statistical analysis of online strain response and its application in fatigue assessment of a long-span steel bridge. Eng Struct. 2003;25(14):1731–41.CrossRefGoogle Scholar
  17. 17.
    Xiao ZG, Yamada K, Inoue J, Yamaguchi K. Fatigue cracks in longitudinal ribs of steel orthotropic deck. Int J Fatigue. 2006;28(4):409–16.CrossRefGoogle Scholar
  18. 18.
    Ni YQ, Ye XW, Ko JM. Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application. J Struct Eng. 2010;136(12):1563–73.CrossRefGoogle Scholar
  19. 19.
    Ye XW, Ni YQ, Wong KY, Ko JM. Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data. Eng Struct. 2012;45:166–76.CrossRefGoogle Scholar
  20. 20.
    Deng Y, Ding YL, Li AQ, Zhou GD. Fatigue reliability assessment for bridge welded details using long-term monitoring data. Sci China Technol Sci. 2011;54(12):3371–81.CrossRefGoogle Scholar
  21. 21.
    Li S, Zhu S, Xu YL, Chen ZW, Li H. Long-term condition assessment of suspenders under traffic loads based on structural monitoring system: application to the Tsing Ma Bridge. Struct Control Health Monit. 2012;19(1):82–101.CrossRefGoogle Scholar
  22. 22.
    Li AQ, Ding YL, Wand H, Guo T. Analysis and assessment of bridge health monitoring mass data—progress in research/development of “Structural Health Monitoring”. Sci China Technol Sci. 2012;55(8):2212–24.CrossRefGoogle Scholar
  23. 23.
    Li AQ, Miao CQ, Li ZX, Han XL, Wu SD, Ji L, Yang YD. Health monitoring system for the Runyang Yangtse River Bridge. J Southeast Univ (Natural Science Edition). 2003;23(5):544–8.Google Scholar
  24. 24.
    British Standards Institution. Eurocode 3: design of steel structures—Part 1–9. Fatigue. 2005.Google Scholar
  25. 25.
    Miner MA. Cumulative damage in fatigue. J Appl Mech T ASME. 1945;12:159–64.Google Scholar
  26. 26.
    Reda Taha MM, Noureldin A, Lucero JL, Baca TJ. Wavelet transform for structural health monitoring: a compendium of uses and features. Struct Health Monit Int J. 2006;5(3):267–95.CrossRefGoogle Scholar
  27. 27.
    Nieslony A. Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech Syst Signal Process. 2009;23(8):2712–21.CrossRefGoogle Scholar
  28. 28.
    Righiniotis TD. Effects of increasing traffic loads on the fatigue reliability of a typical welded bridge detail. Int J Fatigue. 2006;28(8):873–80.CrossRefGoogle Scholar
  29. 29.
    Deng Y, Liu Y, Feng DM, Li AQ. Investigation of fatigue performance of welded details in long-span steel bridges using long-term monitoring strain data. Struct Control Health Monit. 2015;22(11):1343–58.CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Future Urban DesignBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations