Skip to main content

Modal Frequency-Based Structural Damage Detection

  • Chapter
  • First Online:
Structural Health Monitoring for Suspension Bridges
  • 572 Accesses

Abstract

Over the past several decades, a significant research effort has been focused on the health monitoring and condition assessment for long-span bridges (Ko et al. in Eng Struct 27(12):1715–1725, 2005) [1], (Hsieh et al. in J Bridge Eng 11(6):707–715, 2006) [2]. How to explain the health condition of the bridge structure according to the collected structural responses remains a great challenge in the civil engineering community. It is well known that bridge structures are subject to varying environmental conditions such as traffic loadings and environmental temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko JM, Ni YQ. Technology developments in structural health monitoring of large-scale bridges. Eng Struct. 2005;27(12):1715–25.

    Article  Google Scholar 

  2. Hsieh KH, Halling MW, Barr PJ. Overview of vibrational structural health monitoring with representative case studies. J Bridge Eng. 2006;11(6):707–15.

    Article  Google Scholar 

  3. Ni YQ, Hua XG, Fan KQ, Ko JM. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng Struct. 2005;27(12):1762–73.

    Article  Google Scholar 

  4. Ding YL, Li AQ, Liu T. Environmental variability study on the measured responses of Runyang Cable-stayed Bridge using wavelet packet analysis. Sci China Ser E: Technol Sci. 2008;51(5):517–28.

    Article  Google Scholar 

  5. Cornwell P, Farrar CR, Doebling SW, Sohn H. Environmental variability of modal properties. Exp Tech. 1999;23(6):45–8.

    Article  Google Scholar 

  6. Peeters B, De Roeck G. One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthquake Eng Struct Dynam. 2001;30(2):149–71.

    Article  Google Scholar 

  7. Sohn H, Dzwonczyk M, Straser EG, Kiremidjian AS, Law KH, Meng T. An experimental study of temperature effect on modal parameters of the Alamos Canyon Bridge. Earthquake Eng Struct Dynam. 1999;28(8):879–97.

    Article  Google Scholar 

  8. Wahab AM, De Roeck G. Effect of temperature on dynamic system parameters of a highway bridge. Struct Eng Int. 1997;7(4):266–70.

    Article  Google Scholar 

  9. Hua XG, Ni YQ, Ko JM, Wong KY. Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique. J Comput Civil Eng. 2007;21(2):122–35.

    Article  Google Scholar 

  10. Kim CY, Jung DS, Kim NS, Yoon JG. Effect of vehicle mass on measured dynamic characteristics of bridge from traffic-induced vibration test. In: Proceedings of the 19th international modal analysis conference, society for experimental mechanics, FEB 05-08, 2001. Bethel: Soc Experimental Mechanics Inc.; 2001.

    Google Scholar 

  11. Zhang QW, Fan LC, Yuan WC. Traffic-induced variability in dynamic properties of cable-stayed bridge. Earthquake Eng Struct Dyn. 2002;31(11):2015–21.

    Article  Google Scholar 

  12. Chen J, Xu YL, Zhang RC. Modal parameters identification of using Ma suspension bridge under typhoon Victor: EMD-HT method. J Wind Eng Ind Aerodyn. 2004;92(10):805–27.

    Article  Google Scholar 

  13. Ni YQ, Ko JM, Hua XG, Zhou HF. Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions. Smart Struct Syst. 2007;3(3):341–56.

    Article  Google Scholar 

  14. Deng Y, Ding YL, Li AQ. Quantitative evaluation of variability in modal frequencies of a suspension bridge under environmental conditions. J Vib Shock. 2011;30(8):230–6.

    Google Scholar 

  15. Ding YL, Deng Y, Li AQ. Study on correlations of modal frequencies and environmental factors for a suspension bridge based on improved neural networks. Sci China-Technol Sci. 2010;53(9):2501–9.

    Article  Google Scholar 

  16. Hu WH, Moutinho C, Caetano E, Magalhaes F, Cunha A. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection. Mech Syst Signal Process. 2012;33:38–55.

    Article  Google Scholar 

  17. Yan AM, Kerschen G, De Boe P, Golinval JC. Structural damage diagnosis under varying environmental conditions—part I: a linear analysis. Mech Syst Signal Process. 2005;19(4):847–64.

    Article  Google Scholar 

  18. Chen ZW, Cai QL, Lei Y, Zhu SY. Damage detection of long-span bridges using stress influence lines incorporated control charts. Sci China-Technol Sci. 2014;57(9):1689–97.

    Article  Google Scholar 

  19. Kosnik DE, Zhang WZ, Durango-Cohen PL. Application of statistical process control for structural health monitoring of a historic building. J Infrastruct Syst. 2014;20(1). https://doi.org/10.1061/(asce)is.1943-555x.0000164.

    Article  Google Scholar 

  20. Kullaa J. Damage detection of the Z24 Bridge using control charts. Mech Syst Signal Process. 2003;17(1):163–70.

    Article  Google Scholar 

  21. Deraemaeker A, Reynders E, De Roeck G, Kullaa J. Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process. 2008;22(1):34–56.

    Article  Google Scholar 

  22. Magalhaes F, Cunha A, Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech Syst Signal Process. 2012;28:212–28.

    Article  Google Scholar 

  23. Wang ZR, Ong KCG. Autoregressive coefficients based Hotelling’s T2 control chart for structural health monitoring. Comput Struct. 2008;86(19–20):1918–35.

    Article  Google Scholar 

  24. Yi TH, Li HN, Song GB, Guo Q. Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart. Int J Struct Stab Dyn. 2016;16(4):1640024.

    Article  Google Scholar 

  25. Montgomery DC. Introduction to statistical quality control. New York: Wiley; 2005.

    MATH  Google Scholar 

  26. Quesenberry CP. On properties of binomial Q charts for variables. J Qual Technol. 1995;27(3):184–203.

    Article  Google Scholar 

  27. Quesenberry CP. SPC Q charts for start-up processes and short or long runs. J Qual Technol. 1991;23(3):213–24.

    Article  Google Scholar 

  28. Quesenberry CP. SPC Q charts for a binomial parameter p: short or long runs. J Qual Technol. 1991;23(3):239–46.

    Article  Google Scholar 

  29. Quesenberry CP. SPC Q charts for a Poisson parameter λ: short or long runs. J Qual Technol. 1991;23(4):296–303.

    Article  MathSciNet  Google Scholar 

  30. Ren WX, Peng XL (2005) Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests. Comput Struct. 2005;83(8–9):536–50.

    Article  Google Scholar 

  31. Ding YL, Li AQ, Sun J, Deng Y. Experimental and analytical studies on static and dynamic characteristics of steel box girder for Runyang Cable-stayed Bridge. Adv Struct Eng. 2008;11(4):425–38.

    Article  Google Scholar 

  32. Macdonald JHG. Identification of the dynamic behaviour of a cable-stayed bridge from full-scale testing during and after construction. Bristol: University of Bristol; 2000.

    Google Scholar 

  33. Li AQ, Miao CQ, Li ZX, Han XL, Wu SD, Ji L, Yang YD. Health monitoring system for the Runyang Yangtse River Bridge. J Southeast Univ (Natural Science Edition). 2003;33(5):544–8.

    Google Scholar 

  34. Yourstone SA, Zimmer WJ. Non-normality and the design of control charts for averages. Decis Sci. 1992;23(5):1099–113.

    Article  Google Scholar 

  35. Bowman AW, Azzalini A. Applied smoothing techniques for data analysis: the Kernel approach with S-Plus illustrations. New York: Oxford University Press; 1997.

    MATH  Google Scholar 

  36. Scott DW. Multivariate density estimation: theory, practice, and visualization. New York: Wiley; 1992.

    Book  Google Scholar 

  37. Sohn H, Czarneck JA, Farrar CR. Structural health monitoring using statistical process control. J Struct Eng ASCE. 2000;126(11):1356–63.

    Article  Google Scholar 

  38. Mackay DJC. Bayesian interpolation. Neural Comput. 1992;4(3):415–47.

    Article  Google Scholar 

  39. Deng Y, Li AQ, Feng DM. Probabilistic damage detection of long-span bridges using measured modal frequencies and temperature. Int J Struct Stab Dyn. 2018;18(10):1850126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y., Li, A. (2019). Modal Frequency-Based Structural Damage Detection. In: Structural Health Monitoring for Suspension Bridges. Springer, Singapore. https://doi.org/10.1007/978-981-13-3347-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3347-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3346-0

  • Online ISBN: 978-981-13-3347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics