Measurement-Based Damage Detection for Expansion Joints

  • Yang DengEmail author
  • Aiqun Li


The most important issues in SHM is to detect, locate, and assess the extent of damage so that its remaining life can be known and possibly extended (Engineering Structures 27(12):1715–1725, 2005 [1]). The general methodology of structural damage detection was extracting meaningful features from the measured data.


  1. 1.
    Ko JM, Ni YQ. Technology developments in structural health monitoring of large-scale bridges. Eng Struct. 2005;27(12):1715–25.CrossRefGoogle Scholar
  2. 2.
    Doebling SW, Farrar CR, Prime MB. A summary review of vibration-based damage identification methods. Shock Vib Dig. 1998;30(2):91–105.CrossRefGoogle Scholar
  3. 3.
    Deng Y, Ding YL, Li AQ. Fatigue reliability assessment for bridge welded details using long-term monitoring data. Sci China Technol Sci. 2011;54(12):3371–81.CrossRefGoogle Scholar
  4. 4.
    Deng Y, Ding YL, Li AQ. Prediction of extreme wind velocity at the site of the Runyang Suspension Bridge. J Zhejiang Univ Sci A. 2011;12(8):605–15.CrossRefGoogle Scholar
  5. 5.
    Ni YQ, Hua XG, Fan KQ, Ko JM. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng Struct. 2005;2(12):1762–73.CrossRefGoogle Scholar
  6. 6.
    Ding YL, Deng Y, Li AQ. Study on correlations of modal frequencies and environmental factors for a suspension bridge based on improved neural networks. Sci China Technol Sci. 2010;53(9):2501–9.CrossRefGoogle Scholar
  7. 7.
    Cornwell P, Farrar CR, Doebling SW, Sohn H. Environmental variability of modal properties. Exp Tech. 1999;23(6):45–8.CrossRefGoogle Scholar
  8. 8.
    Ding YL, Li AQ. Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge. Int J Steel Struct. 2011;11(2):145–55.CrossRefGoogle Scholar
  9. 9.
    Chen WF, Duan L. Bridge engineering handbook. Boca Raton: CRC Press; 2000.Google Scholar
  10. 10.
    Ni YQ, Hua XG, Wong KY, Ko JM. Assessment of bridge expansion joints using long-term displacement and temperature measurement. J Perform Constr Facil. 2007;21(2):143–51.CrossRefGoogle Scholar
  11. 11.
    Li AQ, Miao CQ, Li ZX, Han XL, Wu SD, Ji L, Yang YD. Health monitoring system for the Runyang Yangtse River Bridge. J Southeast Univ (Nat Sci Edit). 2003;23(5):544–8.Google Scholar
  12. 12.
    Zhang QW, Fan LC, Yuan WC. Traffic-induced variability in dynamic properties of cable-stayed bridge. Earthq Eng Struct Dynam. 2002;31(11):2015–21.CrossRefGoogle Scholar
  13. 13.
    Chen J, Xu YL, Zhang RC. Modal parameters identification of Tsing Ma suspension bridge under typhoon Victor: EMD-HT method. J Wind Eng Ind Aerodyn. 2004;92(10):805–27.CrossRefGoogle Scholar
  14. 14.
    Fugate LM, Sohn H, Farrar CR. Vibration-based damage detection using statistical process control. Mech Syst Signal Process. 2001;15(4):707–21.CrossRefGoogle Scholar
  15. 15.
    Kullaa J. Damage detection of the Z24 bridge using control charts. Mech Syst Signal Process. 2003;17(1):163–70.CrossRefGoogle Scholar
  16. 16.
    Deraemaeker A, Reynders E, De Roeck G, Kullaa J. Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process. 2008;22(1):34–56.CrossRefGoogle Scholar
  17. 17.
    Miao CQ, Deng Y, Ding YL, Li AQ. Damage alarming for bridge expansion joints using novelty detection technique based on long-term monitoring data. J Cent South Univ. 2013;20(1):226–35.CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Future Urban DesignBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations