Skip to main content

Introduction

  • Chapter
  • First Online:
  • 499 Accesses

Abstract

In 1963, the Swedish Noren first proposed the definition of microalloyed steel, namely the Mn-bearing alloy steel or low-alloyed steel with the addition of a small amount of alloying elements. The alloying element has a significant effect on one or several properties of steel, and its amount is smaller than that of traditional alloying element in steel by 1–2 orders of magnitude (Noren in Special report on Columbium as a microalloying element in steel and its effect on welding technology. Ship Structure Committee, Washington, 1963, [1]). This definition has been widely adopted around the world and has been in use up to now. Titanium microalloyed steel is such one kind of microalloyed steel, and titanium is a typical microalloying element. There are other similar elements, such as niobium, vanadium and boron.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Noren T M. Special report on columbium as a microalloying element in steel and its effect on welding technology [R]. Washington: Ship Structure Committee, 1963.

    Google Scholar 

  2. Leyens C, Peters M (eds). Titanium and titanium alloys [M]. Weinheim: Willey-VCH, 2003.

    Google Scholar 

  3. Loss R D. Atomic weights of the elements 2001 [J]. Pure Appl. Chem., 2003, 75: 1107–1122.

    Google Scholar 

  4. Brandes E A. Smithells metals reference book [M]. 6th edition. London: Butterworth & Co. Ltd., 1983.

    Google Scholar 

  5. Yong Q L, Ma M T, Wu B R. Physical-mechanical metallurgy of microalloyed steel [M]. Machinery Industry Press, Beijing, 1989.

    Google Scholar 

  6. Zener C, Smith C S. Grains, phases, and interfaces: an interpretation of microstructure [J]. Trans AIME, 1948, 175:47.

    Google Scholar 

  7. Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metal., 1965,13: 227–238.

    Article  CAS  Google Scholar 

  8. Gladman T. The theory of precipitate particles on grain growth in metals [C]. Proc. Roy. Soc., 1966, 294A: 298–309.

    Google Scholar 

  9. Pickering F B. Physical metallurgy and the design of steels [M]. London: Applied Sci. Pub., 1978.

    Google Scholar 

  10. Balance J B. The hot deformation of austenite [C]. New York: TMS-AIME, 1976.

    Google Scholar 

  11. Cuddy L J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation [C]. In: DeArdo A J, Ratz G A (eds), Thermomechanical processing of microalloyed austenite, Warrendale: TMS-AIME, 1984: 129–140.

    Google Scholar 

  12. Dong H, Sun X J, Liu Q Y, et al. Deformation induced ferrite transformation-phenomena and theory. Iron and Steel, 2003, 38(10), 56–67.

    Google Scholar 

  13. Dong H, Sun X J. Deformation induced ferrite transformation in low carbon steels [J]. Current Opinion in Solid State and Materials Science, 2005, 9: 269–276.

    Article  CAS  Google Scholar 

  14. Sun X J, Dong H, Liu Q Y, et al. On post-dynamic austenite-to-ferrite transformation in a low carbon steel [C]. Proceedings of the 3rd International Conference on Advanced Structural Steels.Gyeongju (Korea), 2006: 105–110.

    Google Scholar 

  15. Hajeri K F, Garcia C I, Hua M J, et al. Particle-stimulated nucleation of ferrite in heavy steel sections [J]. ISIJ Inter. 2006, 46(8): 1233–1240.

    Google Scholar 

  16. Mao X P. Microalloying technology on thin slab casting and direct rolling process [M]. Metallurgy Industry Press, Beijing, 2008.

    Google Scholar 

  17. Gladman T. The physical metallurgy of microalloyed steels [M]. London: The Institute of Materials, 1997.

    Google Scholar 

  18. Cahn R W. Physical metallurgy [M]. Netherlands: North-Holland, 1970.

    Google Scholar 

  19. Yong Q L. Theoretical analysis on the mechanism of precipitation strengthening of microalloyedcarbonitride in ferrite. Chinese Science Bulletin, 1989, 34(19): 707–709.

    Google Scholar 

  20. Yong Q L, Sun X J, Yang G W, et al. Solution and precipitation of secondary phase in steels: phenomenon, theory and practice.

    Google Scholar 

  21. Yong Q L, Zhen L, Sun Z B, Precipitation and precipitation strengthening of niobium carbide in ferrite in microalloyed steel. Acta Metallurgica Sinica, 1984, 20(1): 9–16.

    Google Scholar 

  22. Takechi H. Metallurgical aspects on interstitial free sheet steel from industrial viewpoints [J]. ISIJ Inter. 1994, 34(1): 1–8.

    Article  CAS  Google Scholar 

  23. Hui W J, Dong H, Weng Y Q, et al. Effect of vanadium microalloying on delayed fracture resistance of high strength steel [J]. Heat Treatment of Metals, 2002, 27(1):10–12.

    Google Scholar 

  24. Hui W J, Dong H, Weng Y Q, et al. Effect of titanium on delayed fracture resistance of high strength steel, Journal of Iron and Steel Research, 2002, 14(1):30–33.

    Google Scholar 

  25. Baker L J, Daniel S R, Parker J D. Metallurgy and processing of ultralow carbon bake hardening steels [J]. Mater. Sci. Tech., 2002, 18(4): 355.

    Article  CAS  Google Scholar 

  26. Gladman T, Dulieu D, Mcivor, I D. Structure-property relationships in high-strength microalloyed steels [C]. In: Proc. of Symp. On Microalloying 75, Union Carbide Corp., New York, 1976: 32–55.

    Google Scholar 

  27. Zhen Y Z, Fitzsimons G, Fix R M, et al. Recrystallization controlled rolling and air cooling of V-Ti-N microalloyed steel [J]. Iron Steel Vanadium Titanium, 1985(3): 12–19.

    Google Scholar 

  28. Mao X P, Huo X D, Sun X J, et al. Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production [J]. Journal of Materials Processing Technology, 2010, 210:1660–1669.

    Article  CAS  Google Scholar 

  29. Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44:1945–1951.

    Article  CAS  Google Scholar 

  30. Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [J]. JFE Technical Report, 2007(10): 19–25.

    Google Scholar 

  31. Shanmugam S, Ramisetti N K, Misra R D, et al. Microstructure and high strength–toughness combination of a new 700MPaNb-microalloyed pipeline steel [J]. Materials Science and Engineering, 2008, 478 A: 26–37.

    Google Scholar 

  32. Yi H L, Du L X, Wang G D, et al. Development of a hot-rolled low carbon steel with high yield strength [J]. ISIJ International, 2006, 46 (5): 754–758.

    Article  CAS  Google Scholar 

  33. Zhang K, Li Z D, Sun X J, et al. Development of Ti–V–Mo complex microalloyed hot-rolled 900MPa-grade high-strength steel [J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28(5), 641–648.

    Article  CAS  Google Scholar 

  34. Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-steels by nanometer-sized carbides [J]. Materials Science and Engineering A, 2009, 499: 162–166.

    Article  Google Scholar 

  35. Wang T P, Kao F H, Wang S H, et al. Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel [J]. Materials Letters, 2011, 65: 396–399.

    Article  CAS  Google Scholar 

  36. Yen H W, Huang C Y, Yang J R. Characterization of interphase precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. ScriptaMaterialia, 2009, 61: 616–619.

    Google Scholar 

  37. Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. ActaMaterialia, 2011, 59: 6264–6274.

    Article  CAS  Google Scholar 

  38. Deardo A J. Metallurgical basis for thermomechanical processing of microalloyed steels [J]. Ironmak.Steelmak., 2001, 28(2): 138–144.

    Article  CAS  Google Scholar 

  39. Cuddy L J. Microstructure developed during thermomechanical treatment of HSLA steels [J]. Metall. Trans. A, 1981, 12A(7): 1313–1320.

    Google Scholar 

  40. Zhang J, Baker T N. Effect of equalization time on the austenite grain size of simulated thin slab direct charged (TSDC) vanadium microalloyed steels [J]. ISIJ International, 2003, 43(12): 2015–2022.

    Article  CAS  Google Scholar 

  41. Funakawa Y, Seto K. Coarsening behavior of nanometer-sized carbide in hot rolled high strength sheet steel [J]. Mater. Sci. Forum, 2007, 539–543: 4813-4818.

    Google Scholar 

  42. Funakawa Y. Mechanical properties of ultra fine particle dispersion strengthened ferritic steel [J]. Mater. Sci. Forum, 2012, 706–709: 2096–2100.

    Google Scholar 

  43. Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng. A, 2013, 565: 430–438.

    Article  CAS  Google Scholar 

  44. Wang C J. Research on the control and mechanical behavior of metastable austenite and precipitates in multi-phase structure steel [D], PhD thesis, Central Iron and Steel Research Institute, Beijing, 2013.

    Google Scholar 

  45. Zhang K, Yong Q L, Sun X J et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metallurgica Sinica, 2016, 52(5): 529–537.

    Google Scholar 

  46. Kim Y W, Kim J H, Hong S, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel [J]. Materials Science and Engineering: A, 2014, 605: 244–252.

    Article  CAS  Google Scholar 

  47. Shen Y F, Wang C M, Sun X. A micro-alloyedferritic steel strengthened by nanoscale precipitates [J]. Materials Science and Engineering: A, 2011, 528: 8150–8156.

    Article  CAS  Google Scholar 

  48. Jha G, Das S, Lodh A, et al. Development of hot rolled steel sheet with 600MPa UTS for automotive wheel application [J]. Materials Science and Engineering: A, 2012, 552: 457–463.

    Article  CAS  Google Scholar 

  49. Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Materials Science and Engineering: A, 2013, 561: 394–402.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Metallurgical Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mao, X., Yong, Q., Huo, X. (2019). Introduction. In: Mao, X. (eds) Titanium Microalloyed Steel: Fundamentals, Technology, and Products. Springer, Singapore. https://doi.org/10.1007/978-981-13-3332-3_1

Download citation

Publish with us

Policies and ethics