An Empirical Analysis of Big Scholarly Data to Find the Increase in Citations

  • J. P. NivashEmail author
  • L. D. Dhinesh Babu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 862)


The research quality and productivity of a research area are decided by the number of research articles and citations. Several factors affect the citation count of a research article. The objective of this paper is to find the influences of social media and abstract views in the increase of citations. The relationship between social media influence and abstract count on the overall citations is evaluated on the top cited research articles of cloud computing area. More research focus is needed to analyze the social media influence score. The research scholars, research organizations, funding agencies, and various communities can increase their research productivity and research impact through this analysis.


Big scholarly data Citation network Scientific collaboration network Bibliometric analysis Information science 


  1. 1.
    M.E.J. Newman, Networks: an introduction, 23(01) (2014)Google Scholar
  2. 2.
    A.L. Kinney, National scientific facilities and their science impact on nonbiomedical research. Proc. Natl. Acad. Sci. 104(46), 17943–17947 (2007)CrossRefGoogle Scholar
  3. 3.
    H.F. Moed, A critical comparative analysis of five world university rankings. Scientometrics 110(2), 967–990 (2017)CrossRefGoogle Scholar
  4. 4.
    J.E. Hirsch, An index to quantify an individual’s s scientific research output. Proc. Natl. Acad. Sci. U.S.A. 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  5. 5.
    I.M. Verma, Impact, not impact factor. Proc. Natl. Acad. Sci. 112(26), 7875–7876 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Garfield, The history and meaning of the journal impact factor. J. Am. Med. Assoc. 295(1), 90–93 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Bornmann, H. Daniel, What do citation counts measure? A review of studies on citing behavior. J. Doc. 64(1), 45–80 (2008)CrossRefGoogle Scholar
  8. 8.
    L. Bornmann, G. Wallon, A. Ledin, Does the committee peer review select the best applicants for funding? An investigation of the selection process for two European molecular biology organization programmes. PLoS ONE, 3(10) (2008)CrossRefGoogle Scholar
  9. 9.
    G. Madaan, S. Jolad, Evolution of scientific collaboration networks, in Proceeding—2014 IEEE International Conference Big Data, IEEE Big Data 2014, pp. 7–13, (2015)Google Scholar
  10. 10.
    Z. Xie, Z. Ouyang, Q. Liu, J. Li, A geometric graph model for citation networks of exponentially growing scientific papers. Phys. A Stat. Mech. Its Appl. 456, 167–175 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Wang, C. Song, A.-L. Barabasi, Quantifying long-term scientific impact, Science (80-.) 342(6154), pp. 127–132 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Redner, “How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B—Condens. Matter Complex Syst., 4(2), 131–134 (1998)CrossRefGoogle Scholar
  13. 13.
    T.A. Brooks, Evidence of complex citer motivations. J. Am. Soc. Inf. Sci. 37(1), 34–36 (1986)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, D. Zhao, R. Cheng, J. Cheng, H. Wang, Finding Influential Papers in Citation Networks, in 2016 IEEE First International Conference on Data Science in Cyberspace, pp. 658–662 (2016)Google Scholar
  15. 15.
    Y. Jia L. Qu, Improve the Performance of link prediction methods in citation network by using H-Index, in 2016 International Conference on Cyber-Enabled Distributed Computing Knowledge Discovery, pp. 220–223 (2016)Google Scholar
  16. 16.
    L. Floridi, Big data and their epistemological challenge. Philos. Technol. 25(4), 435–437 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Caragea, J. Wu, K. Williams, S. Das, G.M. Khabsa, P. Teregowda, C.L. Giles, Automatic identification of research articles from crawled documents (2014)Google Scholar
  18. 18.
    Y. Lin, H. Tong, J. Tang, K. Selc, Guest editorial: big scholar data discovery and collaboration. IEEE Trans. Big Data 2(1), 1–2 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Xia, W. Wang, T.M. Bekele, H. Liu, Big scholarly data: a survey. IEEE Trans. Big Data 3(1), 18–35 (2017)CrossRefGoogle Scholar
  20. 20.
    M.W. Nielsen, Gender and citation impact in management research. J. Informetr. 11(4), 1213–1228 (2017)CrossRefGoogle Scholar
  21. 21.
    H.J. Kim, Y.K. Jeong, M. Song, Content- and proximity-based author co-citation analysis using citation sentences. J. Informetr. 10(4), 954–966 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Fiala, G. Tutoky, PageRank-based prediction of award-winning researchers and the impact of citations. J. Informetr. 11(4), 1044–1068 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Bornmann, L. Leydesdorff, Skewness of citation impact data and covariates of citation distributions: a large-scale empirical analysis based on Web of Science data. J. Informetr. 11(1), 164–175 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Guan, Y. Yan, J.J. Zhang, The impact of collaboration and knowledge networks on citations. J. Informetr. 11(2), 407–422 (2017)CrossRefGoogle Scholar
  25. 25.
    G.S. Patience, C.A. Patience, B. Blais, F. Bertrand, Citation analysis of scientific categories. Heliyon 3(5) (2017)CrossRefGoogle Scholar
  26. 26.
    N. Wang, H. Liang, Y. Jia, S. Ge, Y. Xue, Z. Wang, Cloud computing research in the IS discipline: A citation/co-citation analysis. Decis. Support Syst. 86, 35–47 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Son, S.B. Kim, Academic paper recommender system using multilevel simultaneous citation networks. Decis. Support Syst. 105, 24–33 (2018)CrossRefGoogle Scholar
  28. 28.
    J.M. Lindsay, PlumX from plum analytics: not just altmetrics. J. Electron. Resour. Med. Libr. 13(1), 8–17 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Information Technology and EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations