Image Denoising Using Wavelet Transform Based Flower Pollination Algorithm

  • B. V. D. S. SekharEmail author
  • S. Venkataramana
  • V. V. S. S. S. Chakravarthy
  • P. S. R. Chowdary
  • G. P. S. Varma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 862)


Image Denoising is a consistent problem from long period of time and still a challenging task for researchers. There evolved many techniques for image denoising which involves filtering techniques in spatial domain, Transform techniques in transform domain (Sekhar et al. in IRECOS 10(10):1012–1017, 2015 [1]), and more recently evolutionary computing tools (ECT) and genetic algorithms proved more effective in denoising of images. There are many ECT available which can be applied for denoising problem (Sekhar et al. in JGIM 25(4) 2017, [2]). In this paper we made an attempt to Denoise both color and grayscale images by applying a new ECT which emerged out with more efficient results. Peak Signal to noise ratio (PSNR), Structural Similarity Index Metric (SSIM), Mean Structural Similarity Index Metric (MSSIM), etc., are considered in this paper as Image quality Assessment metrics. Comparison of proposed method is also compared with state-of-the-art techniques.


Image denoising Evolutionary computing tools (ECT) Flower pollination algorithm (FPA) Optimization Wavelet transforms Peak signal to noise ratio (PSNR) Structural similarity index metric (SSIM) Mean structural similarity index metric (MSSIM) 


  1. 1.
    B.V.D.S. Sekhar, P.V.G.D. Prasad Reddy, G.P.S. Varma, Novel technique of image denoising using adaptive haar wavelet transformation, in IRECOS, 2015, vol 10, No 10, pp 1012–1017 ISSN 1828–6003CrossRefGoogle Scholar
  2. 2.
    B.V.D.S. Sekhar, P.V.G.D. Prasad Reddy, G.P.S. Varma, Performance of secure and robust watermarking using evolutionary computing technique. JGIM 25(4), Article 5 (October–December 2017) Pages 61–79CrossRefGoogle Scholar
  3. 3.
    F. Luisier, T. Blu, M. Unser, A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593 (2007). (Biomed. Imaging Group, Swiss Fed. Inst. of Technol., Lausanne)MathSciNetCrossRefGoogle Scholar
  4. 4.
    B.C. Buades, J. Morel, On Image Denoising Methods, Technical Report 2004-15, CMLA 2004Google Scholar
  5. 5.
    B.C. Buades, J.M. Morel, A non-local algorithm for image denoising, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol 2, pp. 60–65 (2005)Google Scholar
  6. 6.
    N. Azzabou, N. Paragios, F. Guichard, Image denoising based on adapted dictionary computation, in IEEE International Conference on Image Processing, 2007. ICIP 2007. pp. III - 109-III -112 (2007)Google Scholar
  7. 7.
    M.R. Bonyadi, Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: a review (2017)CrossRefGoogle Scholar
  8. 8.
    A.P. Engelbrecht, Computational Intelligence: An Introduction (Wiley, New York, 2007)CrossRefGoogle Scholar
  9. 9.
    J. Kennedy, Particle swarm optimization, in Encyclopaedia of Machine Learning (Springer, Berlin, 2011), pp. 760–766Google Scholar
  10. 10.
    Y. Shi et al., Particle swarm optimization: developments, applications and resources, in Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol 1. (IEEE, New York, 2001), pp. 81–86Google Scholar
  11. 11.
    Y. Shi, R. Eberhart, A modified particle swarm optimizer, in The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence (IEEE, New York, 1998)Google Scholar
  12. 12.
    R. Eberhart, J. Kennedy, A new optimizer using particle warm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ‘95, pp. 39–43 (1995)Google Scholar
  13. 13.
    R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol 1, pp. 84–88 (2000)Google Scholar
  14. 14.
    X.-S. Yang, Flower pollination algorithm for global optimization, in ed. by J. Durand-Lose and N. Jonoska Unconventional Computation and Natural Computation. vol 7445 of Lecture Notes in Computer Science (Berlin, Springer, 2012), pp. 240–249Google Scholar
  15. 15.
    V. Vedula, S.R. Paladuga, M.R. Prithvi, Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm. Int. J. Antennas Propag. (2015)Google Scholar
  16. 16.
    V. Chakravarthy, P.S.R. Chowdary, G. Panda, J. Anguera, A. Andújar, B. Majhi, On the linear antenna array synthesis techniques for sum and difference patterns using flower pollination algorithm. Arab. J. Sci. Eng., 1–13Google Scholar
  17. 17.
    C.S.R. Paladuga, C.V. Vedula, J. Anguera, R.K. Mishra, A. Andújar, Performance of beamwidth constrained linear array synthesis techniques using novel evolutionary computing tools. Applied Computational Electromagnetics Society Journal. pp. 273–278 (ACES JOURNAL, Vol. 33, No. 3, March 2018)Google Scholar
  18. 18.
    A.K. Bhandari, D. Kumar, A. Kumar, G.K. Singh, Optimal sub-band adaptive thresholding based edge preserved satellite image denoising using adaptive differential evolution algorithm. Neurocomputing 174, 698–721 (2016)CrossRefGoogle Scholar
  19. 19.
    A.K. Bhandari, A. Kumar, G.K. Singh, V. Soni, Performance study of evolutionary algorithm for different wavelet filters for satellite image denoising using sub-band adaptive threshold. J. Exp. Theor. Artif. Intell. (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • B. V. D. S. Sekhar
    • 1
    Email author
  • S. Venkataramana
    • 1
  • V. V. S. S. S. Chakravarthy
    • 2
  • P. S. R. Chowdary
    • 2
  • G. P. S. Varma
    • 1
  1. 1.Department of Information TechnologyS.R.K.R Engineering CollegeBhimavaramIndia
  2. 2.Department of Electronics and Communication EngineeringRaghu Institute of TechnologyVisakhapatnamIndia

Personalised recommendations