A Comparative Survey on Three-Dimensional Reconstruction of Medical Modalities Based on Various Approaches

  • Sushitha Susan JosephEmail author
  • D. Aju
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 862)


The area of three-dimensional reconstructions has made advances in the recent years. Image reconstruction is the mathematical process which converts the signals obtained from the scanning machine into an image. Particularly in the medical field, the reconstructed images aid in the surgery and research. This survey provides an overview of three-dimensional reconstruction techniques in medical images using various imaging modalities like MRI, CT, biplanar radiography, and light microscopy along with the related disease. The reconstruction techniques such as Marching Cubes, Delaunay’s Triangulation, Outlier Removal, Edge Enhancement and Binarization, False Positive Pruning, Contours, Support Vector Machines, Poisson Surface Reconstruction, Dictionary Learning, and Parametric Models are briefly described. The advantages and disadvantages of each technique are discussed and some possible future directions are suggested.


3D reconstruction Marching cubes Delaunay’s triangulation PSR Dictionary learning Parametric models 


  1. 1.
    C.A. Landes, F. Weichert, P. Geis, F. Helga, M. Wagner, Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy. Anat. Rec. 288, 248–262 (2006)CrossRefGoogle Scholar
  2. 2.
    C.S. Wang, W.H. Wang, M.C. Lin, STL rapid prototyping bio-CAD model for CT medical image segmentation. Comput. Ind. 61, 187–197 (2010)CrossRefGoogle Scholar
  3. 3.
    L.T. De Paolis, M. Pulimeno, G. Aloisio, Visualization and interaction system for surgical planning, in ed. by V. Luzar-Stiffler, I. Jarec, Z. Bekic, Proceedings of the 32nd International Conference on Information Technology Interfaces (ITI 2010), Cavtat/Dubrovnik, Croatia, June 21–24, 1st Ed. Zagreb, Croatia: University of Zagreb, University Computing Centre, pp. 269–274 (2010)Google Scholar
  4. 4.
    W. Lamadé, G. Glombitza, L. Fischer, P. Chiu, C.E. Cárdenas, M. Thorn, H.P. Meinzer, L. Grenacher, H. Bauer, T. Lehnert, C. Herfarth, The impact of 3-dimensional reconstructions on operation planning in liver surgery. Arch. Surg. (Chicago, Ill.: 1960) 135(11), 1256–1261 (2000)Google Scholar
  5. 5.
    H. Lang, A. Radtke, M. Hindennach, T. Schroeder, N.R. Frühauf, M. Malagó, H. Bourquain, H.-O. Peitgen, K.J. Oldhafer, C.E. Broelsch, Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch. Surg. (Chicago, Ill.: 1960) 140(7), 629–638 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Hansen, S. Zidowitz, B. Preim, Impact of model-based risk analysis for liver surgery planning. Int. J. Comput. Assist. Radiol. Surg. 9(3), 473–480 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Lamata, F. Lamata, V. Sojar, P. Makowski, L. Massoptier, S. Casciaro, W. Ali, T. Stüdeli, J. Declerck, O.J. Elle, B. Edwin, Use of the resection map system as guidance during hepatectomy. Surg. Endosc. 24(9), 2327–2337 (2010)CrossRefGoogle Scholar
  8. 8.
    M.S. Nizam, B.J.J. Abdullah, N. Kwan-Hoong, A.C. Ahmad, Magnetic resonance imaging: Health effects and safety, in Proceedings of the International Conference on NonIonizing Radiation at UNITEN ICNIR2003, (ICNIR2003), 20 Oct (2003)Google Scholar
  9. 9.
    A. Berger, Science editor Article on Magn. Reson. Imaging BMJ 324(7328), 35. PMCID: PMC1121941, US National Library of Medicine National Institutes of Health (2002)Google Scholar
  10. 10.
    M. Zhao, D.A. Beauregard, L. Loizou, B. Davletov, K.M. Brindle, Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK. Nat. Med. 7, 1241–1244 (2001)Google Scholar
  11. 11.
    G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections (Springer Publishing Company, Incorporated, 2009)CrossRefGoogle Scholar
  12. 12.
    P. Gamage, S.Q. Xie, P. Delmas, Diagnostic radiograph based bone reconstruction framework: application to the femur. Comp. Med. Imag. Graph. 35, 427–437 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Yazici, E.R. Acaroglu, A. Alanay, V. Deviren, A. Cila, A. Surat, Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J. Pediatr. Orthop. 21(2), 252–256 (2001)Google Scholar
  14. 14.
    E. Melhem, A. Assi, R. El Rachkidi, I. Ghanem, EOS® biplanar X-ray imaging: concept, developments, benefits, and limitations. J. Child. Orthop. 10(1), 1–14 (2016)CrossRefGoogle Scholar
  15. 15.
    K.M. Woods, C. Fischer, M.K. Cheezum, E.A. Hulten, B. Nguyen, T.C. Villines, The prognostic significance of Coronary CT angiography. Curr. Cardiol. Rep. 14(1), 7–16 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Lorensen, H. Cline, Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  17. 17.
    M.P. Arakeri, G. Ram Mohana Reddy, An effective and efficient approach to 3D reconstruction and quantification of brain tumor on magnetic resonance images. Int. J. Signal Process. Image Process. Pattern Recogn. 6, 135–142 (2013)Google Scholar
  18. 18.
    C. Gnonnou, N. Smaoui, Segmentation and 3D reconstruction of MRI images for breast cancer detection, in International Image Processing Applications and Systems Conference (2014)Google Scholar
  19. 19.
    P.A. Nugroho, D.K. Basuki, R. Sigit, 3D heart image reconstruction and visualization with marching cubes algorithm, in Knowledge Creation and Intelligent Computing, pp. 35–41 (2016)Google Scholar
  20. 20.
    V.I. Kigka, G. Rigas, A. Sakellarios, P. Siogkas, I.O. Andrikos, T.P. Exarchos, D. Loggitsi, C.O. Parodi, Dimitrios I. Fotiadis.: 3D reconstruction of coronary arteries and atherosclerotic plaques based on computed tomography angiography images. Biomed. Signal Process. Control 40, 286–294 (2018)CrossRefGoogle Scholar
  21. 21.
    M.J. Budoff, Assessment of coronary artery disease by cardiac computed tomography a scientific statement from the American heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation 114(16), 1761–1791 (2006)Google Scholar
  22. 22.
    A.S. Bharathi, D. Manimegalai, 3D Digital reconstruction of brain tumor from MRI scans using Delaunay triangulation and patches. ARPN J. Eng. Appl. Sci. 10, 9227–9232 (2015)Google Scholar
  23. 23.
    P. García-López, V. García-Marín, M. Freire, Dendritic spines and development: towards a unifying model of spinogenesis—a present day review of Cajal’s histological slides and drawings. Neural Plas. 2010, 1–29 (2010)CrossRefGoogle Scholar
  24. 24.
    P. Penzes, M.E. Cahill, K.A. Jones, J.-E. VanLeeuwen, K.M. Woolfrey, Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Reberger, A. Dall’Oglio, C.R. Jung, A.A. Rasia-Filho, Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy. J. Neurosci. Methods 293, 27–36 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. De-xin, A method for brain 3D surface reconstruction from MR images. Optoelectron. Lett. 10(5), 383–386 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, L. Lv, X. Shi, Y. Wang, F. Guo, Y. Zhang, H. Li, 3-D Reconstruction of the Spine from biplanar radiographs based on contour matching using the hough transform. IEEE Trans. Biomed. Eng. 60(7), 1954–1962 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Angelopoulou, A. Psarrou, J. Garcia-Rodriguez, S. Orts-Escolano, J.A. Lopez, K. Revett, 3D reconstruction of medical images from slices automatically landmarked with growing neural Models. Neurocomputing 150, 16–25 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Manevitz, M. Yousef, One-class svms for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)zbMATHGoogle Scholar
  30. 30.
    L. Wang, G. Xu, L. Guo, X. Liu, S. Yang, 3D reconstruction of head MRI based on one class support vector machine with immune algorithm, in Proceedings of 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 6015–6018 (2007)Google Scholar
  31. 31.
    F. Lecron, J. Boisvert, S. Mahmoudi, H. Labelle, M. Benjelloun, Three-dimensional spine model reconstruction using one-class SVM regularization. IEEE Trans. Biomed. Eng. 60(11), 3256–3264 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Guo, Y. Li, D. Miao, L. Zhao, W. Yan, X. Shen, 3-D Reconstruction of Encephalic Tissue in MR Images Using Immune Sphere-Shaped SVMs. IEEE Trans. Magn. 47(5), 870–873 (2011)CrossRefGoogle Scholar
  33. 33.
    V. Leonardi, V. Vidal, J. Mari, M. Daniel, 3D reconstruction from CT-scan volume dataset application to kidney modeling, in Proceedings of the 27th Spring Conference on Computer Graphics, vol D, pp. 111–120 (2011)Google Scholar
  34. 34.
    H.H. Khaleel, R.O.K. Rahmat, D.M. Zamrin, R. Mahmod, N. Mustapha, 3D surface reconstruction of coronary artery trees for vessel locations’ detection. Arab J. Sci. Eng. 39, 1749–1773 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Palomara, F.A. Cheikh, B. Edwin, A. Beghdadhi, O.J. Elle, Surface reconstruction for planning and navigation of liver resections. Comput. Med. Imaging Graph. 53, 30–42 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Zhang, X. Wang, X. Liang, J. Zheng, 3D Reconstruction of human bones based on dictionary learning. Med. Eng. Phys. 49,163–170 (2017)CrossRefGoogle Scholar
  37. 37.
    D.M. Pomero, S. Laporte, J. A. de Guise, W. Skalli, Fast accurate stereo-radiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin. Biomech. 19, 240–247 (2004)CrossRefGoogle Scholar
  38. 38.
    L. Humbert, J.A. De Guise, B. Aubert, B. Godbout, W. Skalli, 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med. Eng. Phys. 31, 681–687 (2009)CrossRefGoogle Scholar
  39. 39.
    Y.S. Jung, H.J. Kim, S.W. Choi, J.W. Kang, I.H. Cha, Regional thickness of parietal bone in Korean adults. Int. J. Ora. Maxillofac Surg. 32, 638–641 (2003)CrossRefGoogle Scholar
  40. 40.
    N. Lynnerup, Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci. Int. 117, 45–51 (2001)CrossRefGoogle Scholar
  41. 41.
    J.H. Kidder, A.C. Durband, A re-evaluation of the metric diversity within Homoerectus. J. Hum. Evol. 46, 299–315 (2004)CrossRefGoogle Scholar
  42. 42.
    H.J. Sommer, R.B. Eckhardt, T.Y. Shiang, Superquadric modeling of cranial and cerebral shape and asymmetry. Am. J. Phys. Anthropol. 129, 189–195 (2006)CrossRefGoogle Scholar
  43. 43.
    C.P. Laurent, E. Jolivet, J. Hodel, P. Decq, W. Skalli, New method for 3D reconstruction of the human cranial vault from CT-scan data. Med. Eng. Phys. 33, 1270–1275 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Chaibi, T. Cresson, B. Aubert, J. Hausselle, P. Neyret, O. Hauger, J. A. de Guise, W. Skalli, Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med. Eng. Phys. 35, 1703–1712 (2013)Google Scholar
  45. 45.
    S. Quijano, A. Serrurier, B. Aubert, S. Laporte, P. Thoreux, W. Skalli, Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med. Eng. Phys. 35, 1703–1712 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Kumar, K. Prabhakar Nayak, K.S. Hareesha, Improving visibility of stereo-radiographic spine reconstruction with geometric inferences. J. Digit Imaging 29, 226–234 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Kadoury, F. Cheriet, H. Labelle, Personalized X-Ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE Trans. Med. Imaging 28(9), 1422–1435 (2009)CrossRefGoogle Scholar
  48. 48.
    J. Dworzak, H. Lamecker, J. von Berg, T. Klinder, C. Lorenz, D. Kainmüller, 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int. J. Comput. Assist. Radiol. Surg. 5, 111–124 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.SCOPEVellore Institute of TechnologyVelloreIndia

Personalised recommendations