Skip to main content

Part of the book series: Computer Architecture and Design Methodologies ((CADM))

  • 854 Accesses

Abstract

In this chapter, edge computing on IoT devices is firstly discussed to achieve low-latency, energy efficient, private and scalable computation. Then we use IoT based smart buildings as one example to illustrate the edge computing in IoT system for applications such as indoor positioning, energy management and network intrusion detection. Furthermore, we will discuss the basics of the machine learning algorithms, distributed machine learning, machine learning accelerators and machine learning model optimizations. A comprehensive literature review on distributed and compact machine learning algorithms is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Obviously, the occupant refers to the end users of buildings.

  2. 2.

    Some literatures may indicate the inference process as the testing process. In this book, testing and inference are interchangeable and testing data refers to the data used for inference.

References

  1. (2017) Apache spark hardware provisioning. https://spark.apache.org/docs/0.9.0/hardware-provisioning.html. Accessed 03 May 2017

  2. Abid S, Fnaiech F, Najim M (2002) A new neural network pruning method based on the singular value decomposition and the weight initialization. In: European signal processing conference, Toulouse, France, pp 1–4

    Google Scholar 

  3. Altini M, Brunelli D, Farella E, Benini L (2010) Bluetooth indoor localization with multiple neural networks. In: International symposium on wireless pervasive computing, Modena, Italy, pp 295–300

    Google Scholar 

  4. Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, Casper J, Catanzaro B, Cheng Q, Chen G et al (2016) Deep speech 2: End-to-end speech recognition in English and Mandarin. In: International conference on machine learning, New York City, pp 173–182

    Google Scholar 

  5. Bengio Y et al (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  MathSciNet  Google Scholar 

  6. Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model compression. In: International conference on knowledge discovery and data mining, Philadelphia, Pennsylvania, pp 535–541

    Google Scholar 

  7. Cai Y, Rai SK, Yu H (2015) Indoor positioning by distributed machine-learning based data analytics on smart gateway network. In: International conference on indoor positioning and indoor navigation, Alberta, Canada, pp 1–8

    Google Scholar 

  8. Chen S, Liu T, Zhou Y, Shen C, Gao F, Che Y, Xu Z (2015) SHE: Smart home energy management system based on social and motion behavior cognition. In: International conference on smart grid communications, Miamimiami, Floridia, pp 859–864

    Google Scholar 

  9. Chen W, Wilson JT, Tyree S, Weinberger KQ, Chen Y (2015) Compressing neural networks with the hashing trick. In: International conference on machine learning, Lille, France, pp 2285–2294

    Google Scholar 

  10. Chen W, Wilson J, Tyree S, Weinberger KQ, Chen Y (2016) Compressing convolutional neural networks in the frequency domain. In: International conference on knowledge discovery and data mining, San Francisco, California, pp 1475–1484

    Google Scholar 

  11. Chen YH, Krishna T, Emer JS, Sze V (2017) Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J Solid-State Circuits 52(1):127–138

    Article  Google Scholar 

  12. Cheng Q, Yao J, Wu H, Chen S, Liu C, Yao P (2013) Short-term load forecasting with weather component based on improved extreme learning machine. In: Chinese automation congress, Hunan, China, pp 316–321

    Google Scholar 

  13. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  14. Cong J, Xiao B (2014) Minimizing computation in convolutional neural networks. In: International conference on artificial neural networks, Hamburg, Germany, pp 281–290

    Google Scholar 

  15. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  16. Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV et al (2012) Large scale distributed deep networks. In: Advances in neural information processing systems, Lake Tahoe, Nevada, pp 1223–1231

    Google Scholar 

  17. Denil M, Shakibi B, Dinh L, de Freitas N et al (2013) Predicting parameters in deep learning. In: Advances in neural information processing systems, Lake Tahoe, Nevada, pp 2148–2156

    Google Scholar 

  18. Google (2016) Apache Haddop. http://hadoop.apache.org. Accessed 02 Nov 2016

  19. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput 22(6):789–828

    Article  Google Scholar 

  20. Guinde NB, Ziavras SG (2010) Efficient hardware support for pattern matching in network intrusion detection. Comput Secur 29(7):756–769

    Article  Google Scholar 

  21. Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv:151000149

  22. Harvey LD (2010) Energy and the new reality 1: Energy efficiency and the demand for energy services. Routledge

    Google Scholar 

  23. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, Caesars Palace, Nevada, pp 770–778

    Google Scholar 

  24. He S, Chan SHG (2016) Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun Surv Tutor 18(1):466–490

    Article  Google Scholar 

  25. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:150302531

  26. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans Power Syst 16(1):44–55

    Article  Google Scholar 

  27. Holtz S, Rohwedder T, Schneider R (2012) The alternating linear scheme for tensor optimization in the tensor train format. SIAM J Sci Comput 34(2):A683–A713

    Article  MathSciNet  Google Scholar 

  28. Hossain AM, Soh WS (2015) A survey of calibration-free indoor positioning systems. Comput Commun 66:1–13

    Article  Google Scholar 

  29. Hoverstad BA, Tidemann A, Langseth H, Ozturk P (2015) Short-term load forecasting with seasonal decomposition using evolution for parameter tuning. IEEE Trans Smart Grid 6(4):1904–1913

    Article  Google Scholar 

  30. Huang H, Cai Y, Xu H, Yu H (2017) A multi-agent minority-game based demand-response management of smart buildings towards peak load reduction. IEEE Trans Comput-Aided Des Integr Circuits Syst 36(4):573–585. https://doi.org/10.1109/TCAD.2016.2571847

    Article  Google Scholar 

  31. Huang H, Xu H, Cai Y, Khalid RS, Yu H (2018) Distributed machine learning on smart-gateway network toward real-time smart-grid energy management with behavior cognition. ACM Trans Des Autom Electron Syst (TODAES) 23(5):56. https://doi.org/10.1145/3209888

    Article  Google Scholar 

  32. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2016) Quantized neural networks: Training neural networks with low precision weights and activations. arXiv:160907061

  33. Hubara I, Soudry D, Yaniv RE (2016) Binarized neural networks. arXiv:160202505

  34. Hung M (2017) Leading the IoT. https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf. Accessed 09 Feb 2018

  35. Hwang K, Cai M, Chen Y, Qin M (2007) Hybrid intrusion detection with weighted signature generation over anomalous internet episodes. IEEE Trans Dependable Secur Comput 4(1)

    Google Scholar 

  36. Janicka J, Rapinski J (2016) Application of RSSI based navigation in indoor positioning. In: Geodetic congress (geomatics), Baltic, Gdansk, Poland, pp 45–50

    Google Scholar 

  37. Johnson BJ, Starke MR, Abdelaziz OA, Jackson RK, Tolbert LM (2014) A method for modeling household occupant behavior to simulate residential energy consumption. In: Innovative smart grid technologies conference, Washington, DC, USA, pp 1–5

    Google Scholar 

  38. Kleissl J, Agarwal Y (2010) Cyber-physical energy systems: Focus on smart buildings. In: Proceeding of design automation conference, San Francisco, California, pp 749–754

    Google Scholar 

  39. Lacey G, Taylor GW, Areibi S (2016) Deep learning on FPGAs: Past, present, and future. arXiv:160204283

  40. Li D, Lee DL (2008) A topology-based semantic location model for indoor applications. In: International workshop on security and privacy in GIS and LBS, Irvine, California, pp 6:1–6:10

    Google Scholar 

  41. Lin D, Talathi S, Annapureddy S (2016) Fixed point quantization of deep convolutional networks. In: International conference on machine learning, New York City, pp 2849–2858

    Google Scholar 

  42. Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C: Appl Rev 37(6):1067–1080

    Article  Google Scholar 

  43. Lu N, Taylor T, Jiang W, Correia J, Leung LR, Wong PC (2009) The temperature sensitivity of the residential load and commercial building load. In: Power and energy society general meeting. IEEE, Alberta, Canada, pp 1–7

    Google Scholar 

  44. Nakkiran P, Alvarez R, Prabhavalkar R, Parada C (2015) Compressing deep neural networks using a rank-constrained topology. In: Sixteenth annual conference of the international speech communication association, Dresden, Germany

    Google Scholar 

  45. Ni L, Huang H, Yu H (2016) On-line machine learning accelerator on digital RRAM-crossbar. In: International symposium on circuits and systems, pp 113–116. https://doi.org/10.1109/ISCAS.2016.7527183

  46. Ni L, Wang Y, Yu H, Yang W, Weng C, Zhao J (2016) An energy-efficient matrix multiplication accelerator by distributed in-memory computing on binary RRAM crossbar. In: Design automation conference (ASP-DAC). IEEE, Macao, China, pp 280–285

    Google Scholar 

  47. Novikov A, Podoprikhin D, Osokin A, Vetrov DP (2015) Tensorizing neural networks. In: Advances in neural information processing systems, Montreal Canada, pp 442–450

    Google Scholar 

  48. PD SM, Yu H, Huang H, Xu D (2016) A Q-learning based self-adaptive I/O communication for 2.5 D integrated many-core microprocessor and memory. IEEE Trans Comput 65(4):1185–1196. https://doi.org/10.1109/TC.2015.2439255

  49. Polinder H et al (2013) International energy agency program on buildings and community. Annex 43-occupants behavior and modeling. International Energy Agency

    Google Scholar 

  50. Quinlan JR (2014) C4. 5: Programs for machine learning. Elsevier, Amsterdam

    Google Scholar 

  51. Richardson DB, Harvey L (2015) Strategies for correlating solar PV array production with electricity demand. Renew Energy 76:432–440

    Article  Google Scholar 

  52. Roesch M et al (1999) Snort: Lightweight intrusion detection for networks. In: USENIX systems administration conference, Seattle, Washington, pp 229–238

    Google Scholar 

  53. Sandels C, Widén J, Nordström L (2014) Forecasting household consumer electricity load profiles with a combined physical and behavioral approach. Appl Energy 131:267–278

    Article  Google Scholar 

  54. Scarfone K, Mell P (2007) Guide to intrusion detection and prevention systems (IDPS). NIST Special Publication 800:94–96

    Google Scholar 

  55. Sim J, Park JS, Kim M, Bae D, Choi Y, Kim LS (2016) 14.6 A 1.42 TOPS/W deep convolutional neural network recognition processor for intelligent IoT systems. In: International solid-state circuits conference, San Francisco, California, pp 264–265

    Google Scholar 

  56. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:14091556

  57. Sutton RS, Barto AG (1998) Introduction to reinforcement learning, vol 135. MIT Press, Cambridge

    Google Scholar 

  58. Theodoridis S, Pikrakis A, Koutroumbas K, Cavouras D (2010) Introduction to pattern recognition: A Matlab approach. Academic, New York

    Google Scholar 

  59. Torres-Solis J, Falk TH, Chau T (2010) A review of indoor localization technologies: Towards navigational assistance for topographical disorientation. INTECH Publisher

    Google Scholar 

  60. Viegas E, Santin AO, França A, Jasinski R, Pedroni VA, Oliveira LS (2017) Towards an energy-efficient anomaly-based intrusion detection engine for embedded systems. IEEE Trans Comput 66(1):163–177

    Article  MathSciNet  Google Scholar 

  61. Wang Y, Huang H, Ni L, Yu H, Yan M, Weng C, Yang W, Zhao J (2015) An energy-efficient non-volatile in-memory accelerator for sparse-representation based face recognition. In: Design, automation and test in Europe conference and exhibition (DATE), 2015. IEEE, pp 932–935

    Google Scholar 

  62. Xia L, Gu P, Li B, Tang T, Yin X, Huangfu W, Yu S, Cao Y, Wang Y, Yang H (2016) Technological exploration of RRAM crossbar array for matrix-vector multiplication. J Comput Sci Technol 31(1):3–19

    Article  MathSciNet  Google Scholar 

  63. Xu D, Yu N, Huang H, Manoj PS, Yu H (2018) Q-learning-based voltage-swing tuning and compensation for 2.5-D memory-logic integration. IEEE Des Test 35(2):91–99. https://doi.org/10.1109/MDAT.2017.2764075

  64. Xu J, Liu W, Lang F, Zhang Y, Wang C (2010) Distance measurement model based on RSSI in WSN. Wirel Sens Netw 2(08):606

    Article  Google Scholar 

  65. Yang C, Shao HR (2015) Wi-Fi-based indoor positioning. IEEE Commun Mag 53(3):150–157

    Article  Google Scholar 

  66. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I (2012) Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on networked systems design and implementation, USENIX Association, pp 2–2

    Google Scholar 

  67. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: International symposium on field-programmable gate arrays, Monterey, California, pp 161–170

    Google Scholar 

  68. Zhang F, Deng H, Margolis R, Su J (2015) Analysis of distributed-generation photo voltaic deployment, installation time and cost, market barriers, and policies in China. Energy Policy 81:43–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hantao Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, H., Yu, H. (2019). Fundamentals and Literature Review. In: Compact and Fast Machine Learning Accelerator for IoT Devices. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-3323-1_2

Download citation

Publish with us

Policies and ethics