Skip to main content

Electrochemical Reduction of Carbon Dioxide into Useful Low-Carbon Fuels

  • Chapter
  • First Online:
CO2 Separation, Purification and Conversion to Chemicals and Fuels

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In this chapter, preliminary discussion on the need for mitigation of greenhouse gas emissions in today’s scenario is emphasized, followed by the foundation to the conversion of CO2 into useful chemicals. Various techniques employed for CO2 sequestration are introduced, and in the midst of these approaches, electrochemical reduction of CO2 is emphasized, owing to its advantages in product selectivity, operation at ambient conditions without supplementary chemical requirements, environmental compatibility, relatively simple modularity and quick scalability. Different types of catalysts reported in the literature for activating and reducing CO2 are critically analysed. To start with, metallic electrodes in aqueous solutions and nanoporous materials are discussed. The reaction mechanism and effect of supporting electrolytes, pressure, and temperature are summarized. Combination of various techniques such as bio-electrochemical reduction and photocatalytic technologies have been accentuated. Furthermore, limitations and outlook of electrochemical reduction of CO2 are presented, in which development of modules similar to that of commercially available H2O electrolysers could pave the way for commercialization of electrocatalytic reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Alcohol dehydrogenase

AldDH:

Aldehyde dehydrogenase

AMS:

American Meteorological Society and Environmental Technology

ARCI:

International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad

BAU:

Business-as-usual

BP:

British Petroleum oil and gas company

CNT:

Carbon nanotubes

Cu/Zn-H:

Zn deposited from high concentration (1 M) on Cu substrate

Cu/Zn-L:

Zn deposited from low concentration (0.1 M) on Cu substrate

DNV group:

Det Norske Veritas group

FDH:

Formate dehydrogenase

FE:

Faradaic efficiency

G. Sulfurreducens:

Geobacter sulfurreducens

GAB:

Genetically altered bacteria

GDE:

Gas diffusion electrodes

GHG:

Greenhouse gas

HEO:

Hydrogen evolution overvoltage

IEA:

International Energy Agency

IPCC:

Intergovernmental panel on climate change

MoU:

Memorandum of Understanding

NCCR:

National Centre for Catalysis Research

NOAA:

National Oceanic Atmospheric Administration

NRC-ICPET:

National Research Council-Institute of Chemical Process

SHE:

Standard hydrogen electrode

SPE:

Solid polymer electrolyte

STEP:

Solar thermal electrochemical photo

USA:

United States of America

XRD:

X-ray diffraction

References

  1. Dlugokencky E, Tans P (2016) NOAA/ESRL. www.esrl.noaa.gov/gmd/ccgg/trends/. Retrieved on 4th Aug 2018

  2. Li M (2017) World energy 2017–2050: annual report

    Google Scholar 

  3. Chen Y, Jiang W, Liang DT, Tay JH (2008) Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor. Appl Microbiol Biotechnol 79(2):301–308

    Article  Google Scholar 

  4. Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (eds) (2007) Climate change 2007-impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  5. GHG Platform India (2017) Trend analysis of GHG emissions in India, Sept 2017. http://www.ghgplatform-india.org. Retrieved on 4th July 2018

  6. Rosso D, Stenstrom MK (2008) The carbon-sequestration potential of municipal wastewater treatment. Chemosphere 70(8):1468–1475

    Article  Google Scholar 

  7. ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Biores Technol 215:357–370

    Article  Google Scholar 

  8. Intergovernmental Panel on Climate Change (IPCC) (2018) Assessments of climate change. http://www.ipcc.ch. Retrieved on 07.08.2018

  9. Metz B (ed) (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  10. Housecroft CE, Sharpe AG (2008) Inorganic chemistry, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  11. Bumroongsakulsawat P, Kelsall GH (2014) Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes. Electrochim Acta 141:216–225

    Article  Google Scholar 

  12. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669

    Article  Google Scholar 

  13. Green DW (2008) Perry’s chemical engineers’ handbook. McGraw Hill, New York

    Google Scholar 

  14. Scibioh MA, Viswanathan B (2004) Electrochemical reduction of carbon dioxide: a status report. In: Proceedings of national academy of science, vol 70, pp 1–56

    Google Scholar 

  15. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32

    Article  Google Scholar 

  16. Olah GA, Goeppert A, Prakash GS (2011) Beyond oil and gas: the methanol economy. Wiley, New Jersey

    Google Scholar 

  17. Gattrell M, Gupta N (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19

    Article  Google Scholar 

  18. Viswanathan B (2011) Reflections on the electrochemical reduction of carbon dioxide on metallic surfaces. Indian J Chem Sec A 51:166–174

    Google Scholar 

  19. Zhang HB, Liang XL, Dong X, Li HY, Lin GD (2009) Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols. Catal Surv Asia 13(1):41–58

    Article  Google Scholar 

  20. Smith YR, Subramanian V, Viswanathan B (2012) Photo-electrochemical and photo-catalytic conversion of carbon dioxide. Photo-Electrochem Photo-Biol Sustain 1:155–182

    Google Scholar 

  21. Yagi F, Kanai R, Wakamatsu S, Kajiyama R, Suehiro Y, Shimura M (2005) Development of synthesis gas production catalyst and process. Catal Today 104(1):2–6

    Article  Google Scholar 

  22. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177

    Article  Google Scholar 

  23. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2(1):19–28

    Article  Google Scholar 

  24. Soussan L, Riess J, Erable B, Delia ML, Bergel A (2013) Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochem Commun 28:27–30

    Article  Google Scholar 

  25. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390

    Article  Google Scholar 

  26. Herzog H (2002) Carbon sequestration via mineral carbonation: overview and assessment. Massachusetts Institute of Technology, Laboratory for Energy and the Environment, Cambridge, Massachusetts

    Google Scholar 

  27. Spath PL, Mann MK (2004) Biomass power and conventional fossil systems with and without CO2 sequestration—comparing the energy balance, greenhouse gas emissions and economics (No. NREL/TP-510-32575). National Renewable Energy Lab, Golden, CO (US)

    Google Scholar 

  28. Licht S, Wang B, Ghosh S, Ayub H, Jiang D, Ganley J (2010) A new solar carbon capture process: solar thermal electrochemical photo (STEP) carbon capture. J Phys Chem Lett 1(15):2363–2368

    Article  Google Scholar 

  29. Loutzenhiser PG, Meier A, Gstoehl D, Steinfeld A (2010) CO2 splitting via the solar thermochemical cycle based on Zn/ZnO redox reactions. In: Advances in CO2 conversion and utilization, vol 1056, pp 25–30. American Chemical Society, Washington

    Google Scholar 

  30. Otake K, Kinoshita H, Kikuchi T, Suzuki RO (2012) CO2 decomposition using electrochemical process in molten salts. J Phys Conf Ser 379(1):012038

    Google Scholar 

  31. White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935

    Article  Google Scholar 

  32. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  Google Scholar 

  33. Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721

    Article  Google Scholar 

  34. Wang J, Ji G, Liu Y, Gondal MA, Chang X (2014) Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol. Catal Commun 46:17–21

    Article  Google Scholar 

  35. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapour to hydrocarbon fuels. Nano Lett 9(2):731–737

    Article  Google Scholar 

  36. Mao J, Li K, Peng T (2013) Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal Sci Technol 3(10):2481–2498

    Article  Google Scholar 

  37. Wu JC, Wu TH, Chu T, Huang H, Tsai D (2008) Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Top Catal 47(3–4):131–136

    Article  Google Scholar 

  38. Arai T, Sato S, Kajino T, Morikawa T (2013) Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ Sci 6(4):1274–1282

    Article  Google Scholar 

  39. Halmann M, Ulman M, Aurian-Blajeni B (1983) Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol Energy 31:429–431

    Article  Google Scholar 

  40. Grills DC, Fujita E (2010) New directions for the photocatalytic reduction of CO2: supramolecular, scCO2 or biphasic ionic liquid—scCO2 systems. J Phys Chem Lett 1(18):2709–2718

    Article  Google Scholar 

  41. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A=Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133(51):20863–20868

    Article  Google Scholar 

  42. Qin G, Zhang Y, Ke X, Tong X, Sun Z, Liang M, Xue S (2013) Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl Catal B 129:599–605

    Article  Google Scholar 

  43. Shibata H (2009) Electrocatalytic CO2 reduction: catalysis engineering and reaction mechanism. Doctoral dissertation, TU Delft, Delft University of Technology

    Google Scholar 

  44. Keerthiga G, Viswanathan B, Chetty R (2015) Electrochemical reduction of CO2 on electrodeposited Cu electrodes crystalline phase sensitivity on selectivity. Catal Today 245:68–73

    Article  Google Scholar 

  45. Keerthiga G, Chetty R (2017) Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes. J Electrochem Soc 164:H164–H169

    Article  Google Scholar 

  46. Ortenzi F, Chiesa M, Scarcelli R, Pede G (2008) Experimental tests of blends of hydrogen and natural gas in light-duty vehicles. Int J Hydrogen Energy 33(12):3225–3229

    Article  Google Scholar 

  47. Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Chemsuschem 4(9):1301–1310

    Article  Google Scholar 

  48. Dominguez-Ramos A, Singh B, Zhang X, Hertwich EG, Irabien A (2015) Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J Clean Prod 104:148–155

    Article  Google Scholar 

  49. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions. Springer Science & Business Media, Berlin

    Google Scholar 

  50. Gattrell M, Gupta N (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manage 48(4):1255–1265

    Article  Google Scholar 

  51. Narayanan SR, Haines B, Soler J, Valdez TI (2011) Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J Electrochem Soc 158(2):A167–A173

    Article  Google Scholar 

  52. Aeshala LM, Uppaluri RG, Verma A (2013) Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J CO2 Utilization 3:49–55

    Article  Google Scholar 

  53. Aeshala LM, Rahman SU, Verma A (2012) Effect of solid polymer electrolyte on electrochemical reduction of CO2. Sep Purif Technol 94:131–137

    Article  Google Scholar 

  54. Machunda RL, Ju H, Lee J (2011) Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Curr Appl Phys 11(4):986–988

    Article  Google Scholar 

  55. Kaneko H, Nozaki K, Ozawa T, Oku K, Shimanuki T, Koga Y (1988) U.S. patent no. 4,732,827. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  56. Chaplin RPS, Wragg AA (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107–1123

    Article  Google Scholar 

  57. Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A 274(1–2):237–242

    Article  Google Scholar 

  58. Li H, Oloman C (2005) The electro-reduction of carbon dioxide in a continuous reactor. J Appl Electrochem 35(10):955–965

    Article  Google Scholar 

  59. Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochemical reduction of carbon dioxide to ethylene at a copper electrode in methanol using potassium hydroxide and rubidium hydroxide supporting electrolytes. Electrochim Acta 51(16):3316–3321

    Article  Google Scholar 

  60. Innocent B, Liaigre D, Pasquier D, Ropital F, Léger JM, Kokoh KB (2009) Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39(2):227

    Article  Google Scholar 

  61. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134(49):19969–19972

    Article  Google Scholar 

  62. Wu J, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359

    Article  Google Scholar 

  63. Alvarez-Guerra M, Del Castillo A, Irabien A (2014) Continuous electrochemical reduction of carbon dioxide into formate using a tin cathode: comparison with lead cathode. Chem Eng Res Des 92(4):692–701

    Article  Google Scholar 

  64. Kaneco S, Iiba K, Hiei NH, Ohta K, Mizuno T, Suzuki T (1999) Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim Acta 44(26):4701–4706

    Article  Google Scholar 

  65. Yano H, Tanaka T, Nakayama M, Ogura K (2004) Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper (I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J Electroanal Chem 565(2):287–293

    Article  Google Scholar 

  66. Kaneco S, Hiei NH, Xing Y, Katsumata H, Ohnishi H, Suzuki T, Ohta K (2002) Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K. Electrochim Acta 48(1):51–55

    Article  Google Scholar 

  67. Podlovchenko BI, Kolyadko EA, Lu S (1994) Electroreduction of carbon dioxide on palladium electrodes at potentials higher than the reversible hydrogen potential. J Electroanal Chem 373(1–2):185–187

    Article  Google Scholar 

  68. Yoshitake H, Kikkawa T, Muto G, Ota KI (1995) Poisoning of surface hydrogen processes on a Pd electrode during electrochemical reduction of carbon dioxide. J Electroanal Chem 396(1–2):491–498

    Article  Google Scholar 

  69. Welford PJ, Brookes BA, Wadhawan JD, McPeak HB, Hahn CE, Compton RG (2001) The electro-reduction of carbon dioxide in dimethyl sulfoxide at gold microdisk electrodes: current|voltage waveshape analysis. J Phys Chem B 105(22):5253–5261

    Article  Google Scholar 

  70. Yano H, Shirai F, Nakayama M, Ogura K (2002) Electrochemical reduction of CO2 at three-phase (gas∣ liquid∣ solid) and two-phase (liquid∣ solid) interfaces on Ag electrodes. J Electroanal Chem 533(1–2):113–118

    Article  Google Scholar 

  71. Stevens GB, Reda T, Raguse B (2002) Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film. J Electroanal Chem 526(1–2):125–133

    Article  Google Scholar 

  72. Hori Y, Ito H, Okano K, Nagasu K, Sato S (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48(18):2651–2657

    Article  Google Scholar 

  73. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJ (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134(48):19520–19523

    Article  Google Scholar 

  74. Lu X, Leung DY, Wang H, Leung MK, Xuan J (2014) Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 1(5):836–849

    Article  Google Scholar 

  75. Marcos ML, González-Velasco J, Bolzán AE, Arvia AJ (1995) Comparative electrochemical behaviour of CO2 on Pt and Rh electrodes in acid solution. J Electroanal Chem 395(1–2):91–98

    Article  Google Scholar 

  76. Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO-/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580

    Article  Google Scholar 

  77. Popić JP, Avramov-Ivić ML, Vuković NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421(1–2):105–110

    Article  Google Scholar 

  78. Mizuno T, Kawamoto M, Kaneco S, Ohta K (1998) Electrochemical reduction of carbon dioxide at Ti and hydrogen-storing Ti electrodes in KOH–methanol. Electrochim Acta 43(8):899–907

    Article  Google Scholar 

  79. Huang M, Faguy PW (1996) Carbon dioxide reduction on platinum |Nafion®| carbon electrodes. J Electroanal Chem 406(1–2):219–222

    Article  Google Scholar 

  80. Ogura K, Endo N (1999) Electrochemical Reduction of CO2 with a functional gas-diffusion electrode in aqueous solutions with and without propylene carbonate. J Electrochem Soc 146(10):3736–3740

    Article  Google Scholar 

  81. Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanal Chem 391(1–2):141–147

    Article  Google Scholar 

  82. Centi G, Perathoner S, Winè G, Gangeri M (2007) Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chem 9(6):671–678

    Article  Google Scholar 

  83. Gangeri M, Perathoner S, Caudo S, Centi G, Amadou J, Begin D, Schlögl R (2009) Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catal Today 143(1–2):57–63

    Article  Google Scholar 

  84. de Tacconi NR, Chanmanee W, Dennis BH, MacDonnell FM, Boston DJ, Rajeshwar K (2011) Electrocatalytic reduction of carbon dioxide using Pt/C-TiO2 nanocomposite cathode. Electrochem Solid-State Lett 15(1):B5–B8

    Article  Google Scholar 

  85. Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K (2009) Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catal Today 148(3–4):329–334

    Article  Google Scholar 

  86. Goncalves MR, Gomes A, Condeço J, Fernandes TRC, Pardal T, Sequeira CAC, Branco JB (2013) Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochim Acta 102:388–392

    Article  Google Scholar 

  87. Yano J, Morita T, Shimano K, Nagami Y, Yamasaki S (2007) Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. J Solid State Electrochem 11(4):554–557

    Article  Google Scholar 

  88. Jiang Z, Xiao T, Kuznetsov VÁ, Edwards PÁ (2010) Turning carbon dioxide into fuel. Philos Trans Roy Soc Lond A Math Phys Eng Sci 368(1923):3343–3364

    Article  Google Scholar 

  89. Wu J, Zhou XD (2016) Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions. Chin J Catal 37(7):999–1015

    Article  Google Scholar 

  90. Hara K, Tsuneto A, Kudo A, Sakata T (1994) Electrochemical reduction of CO2 on a Cu electrode under high pressure factors that determine the product selectivity. J Electrochem Soc 141(8):2097–2103

    Article  Google Scholar 

  91. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234

    Article  Google Scholar 

  92. Kabir K (2016) Surface acoustic wave based sensors for selective detection of low concentration elemental mercury vapour

    Google Scholar 

  93. Schouten KJP, Kwon Y, Van der Ham CJM, Qin Z, Koper MTM (2011) A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2(10):1902–1909

    Article  Google Scholar 

  94. Ogura K, Ferrell JR III, Cugini AV, Smotkin ES, Salazar-Villalpando MD (2010) CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim Acta 56(1):381–386

    Article  Google Scholar 

  95. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135

    Article  Google Scholar 

  96. Ryczkowski J (2001) IR spectroscopy in catalysis. Catal Today 68:263–381

    Article  Google Scholar 

  97. Rajmohan KS, Chetty R (2017) Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor. J Appl Electrochem 47(1):63–74

    Article  Google Scholar 

  98. Wang J (2006) Analytical electrochemistry. Wiley, New Jersey

    Book  Google Scholar 

  99. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35

    Article  Google Scholar 

  100. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110

    Article  Google Scholar 

  101. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882-2886. https://doi.org/10.1128/AEM.02642-10

    Article  Google Scholar 

  102. Malik K, Singh S, Basu S, Verma A (2017) Electrochemical reduction of CO2 for synthesis of green fuel. Wiley Interdisc Rev Energy Environ 6(4):e244

    Google Scholar 

  103. Singh S, Gautam RK, Malik K, Verma A (2017) Ag-Co bimetallic catalyst for electrochemical reduction of CO2 to value added products. J CO2 Utilization 18:139–146

    Google Scholar 

  104. Keerthiga G, Viswanathan B, Chetty R (2018) Effect of bicarbonate and chloride electrolytes on product distribution for CO2 electrochemical reduction on Cu electrode. Catal Green Chem Eng 1(2)

    Article  Google Scholar 

  105. Keerthiga G, Viswanathan B, Pulikottil CA, Chetty R (2012) Electrochemical reduction of carbon dioxide at surface oxidized copper electrodes. Bonfring Int J Ind Eng Manage Sci 2(1):41–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rajmohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chetty, R., Varjani, S., Keerthiga, G., Srinath, S., Rajmohan, K.S. (2019). Electrochemical Reduction of Carbon Dioxide into Useful Low-Carbon Fuels. In: Winter, F., Agarwal, R., Hrdlicka, J., Varjani, S. (eds) CO2 Separation, Purification and Conversion to Chemicals and Fuels. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3296-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3296-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3295-1

  • Online ISBN: 978-981-13-3296-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics