Skip to main content

Oxidative Dehydrogenation of Ethane to Ethylene Over Metal Oxide Catalysts Using Carbon Dioxide

  • Chapter
  • First Online:
CO2 Separation, Purification and Conversion to Chemicals and Fuels

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Ethylene is the most significant product that is being used in different sectors. The demand for ethylene is increasing year by year as it is the preferred raw material in the production of various industrially important products such as HDPE, LDPE, PVC, ethylene glycol, styrene, and ethylene dichloride. Carbon dioxide is a promising oxidant for the dehydrogenation of ethane. The global consumption of ethylene has increased to approx. 160 million ton per year with an annual growth rate of 4%. A significant amount of ethylene is produced by pyrolysis of various hydrocarbon stocks using steam, which is a highly energy-intensive process. Oxidative dehydrogenation of ethane using carbon dioxide is considered as one of the alternative methods for obtaining ethylene with higher yield. This chapter explores the effectiveness of metal oxide catalysts, with a particular interest in achieving higher selectivity to ethylene and better conversion of ethane and carbon dioxide. Various methods of preparation and physicochemical characterization techniques of catalysts were analyzed in detail. Performances of metal oxides and metal oxide-supported Cr2O3 catalysts were evaluated in a fixed-bed quartz reactor at 550–675 °C. Cr2O3 on metal oxide catalysts is suitable for oxidative dehydrogenation of ethane in the presence of CO2. CO2 which acts as a diluent for enhancing the equilibrium conversion of light alkanes and as an agent for the removal of coke formed on the catalyst thus acquires enormous importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Domen K et al (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996

    Article  Google Scholar 

  2. EPA Office of Compliance sector Notebook Project (2014) Profile of the organic chemical industry, 2nd edn, www.epa.gov/compliance/resources/publications/assistance/sectors/notebooks, Accessed 10 Nov 2004

  3. Corma A, García H (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem Rev 102(10):3837–3892

    Article  Google Scholar 

  4. Ansari MB, Park SE (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5(11):9419–9437

    Article  Google Scholar 

  5. Chang JS, Vislovskiy VP, Park MS, Yoo JS, Park SE (2003) Utilization of carbon dioxide as soft oxidant in the dehydrogenation of ethylbenzene over supported vanadium–antimony oxide catalysts. Green Chem 5(5):587–590

    Article  Google Scholar 

  6. Kumar ASH, Prasad P (2014) Cracking and oxidative dehydrogenation of ethane to ethylene: process and intensification options. In: Industrial catalysis and separations: innovations for process intensification, p 287

    Chapter  Google Scholar 

  7. Yoo JS, Lin PS, Elfline SD (1993) Gas-phase oxygen oxidations of alkylaromatics over CVD Fe/Mo/borosilicate molecular sieve. II. The role of carbon dioxide as a co-oxidant. Appl Catal A Gen 106(2):259–273

    Article  Google Scholar 

  8. Pieck CL, Banares MA, Fierro JLG (2004) Propane oxidative dehydrogenation on VOx/ZrO2 catalysts. J Catal 224(1):1–7

    Article  Google Scholar 

  9. Gao X, Wachs IE (2000) Investigation of surface structures of supported vanadium oxide catalysts by UV–vis–NIR diffuse reflectance spectroscopy. J Phys Chem B 104(6):1261–1268

    Article  Google Scholar 

  10. Watson RB, Lashbrook SL, Ozkan US (2004) Chlorine modification of Mo/silica-titania mixed-oxide catalysts for the oxidative dehydrogenation of ethane. J Mol Catal A Chem 208(1–2):233–244

    Article  Google Scholar 

  11. Jones A (2014) Tempature-programmed reduction for solid materials characterization. CRC Press, Boca Rotan

    Google Scholar 

  12. Malet P, Caballero A (1988) The selection of experimental conditions in temperature-programmed reduction experiments. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 84(7):2369–2375

    Article  Google Scholar 

  13. Tran K, Hanning-Lee MA, Biswas A, Stiegman AE, Scott GW (1995) Electronic structure of discrete pseudotetrahedral oxovanadium centers dispersed in a silica xerogel matrix: implications for catalysis and photocatalysis. J Am Chem Soc 117(9):2618–2626

    Article  Google Scholar 

  14. Haber J (1994) Supported vanadium oxide catalysts: molecular structural characterization and reactivity properties. Crit Rev Surf Chem 4(3/4):141–187

    Google Scholar 

  15. Newbury DE, Joy DC, Echlin P, Fiori CE, Goldstein JI (1986) Electron channeling contrast in the SEM. In: Advanced scanning electron microscopy and X-ray microanalysis. Springer, Boston, MA, pp 87–145

    Chapter  Google Scholar 

  16. McDonald AM (1998) Environmental scanning electron microscopy. Mater World 6:399–401

    Google Scholar 

  17. Koeppel RA, Nickl J, Baiker A (1994) 5 Characterization of V2O5/TiO2 Eurocat samples by temperature-programmed reduction. Catal Today 20(1):45–52

    Article  Google Scholar 

  18. Hurst NW, Gentry SJ, Jones A, McNicol BD (1982) Temperature programmed reduction. Catal Rev Sci Eng 24(2):233–309

    Article  Google Scholar 

  19. Monti DA, Baiker A (1983) Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J Catal 83(2):323–335

    Article  Google Scholar 

  20. Cvetanović RJ, Amenomiya Y (1972) A temperature programmed desorption technique for investigation of practical catalysts. Catal Rev 6(1):21–48

    Article  Google Scholar 

  21. Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127(1–4):113–131

    Article  Google Scholar 

  22. Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231(1):159–171

    Article  Google Scholar 

  23. Heracleous E, Lemonidou AA (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. J Catal 237(1):162–174

    Article  Google Scholar 

  24. Heracleous L (2003) Strategy and organization: realizing strategic management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Solsona B, Vázquez MI, Ivars F, Dejoz A, Concepción P, Nieto JL (2007) Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. J Catal 252(2):271–280

    Article  Google Scholar 

  26. Rao TM, Sayari A (2009) Ethane dehydrogenation over pore-expanded mesoporous silica-supported chromium oxide: 2 Catalytic properties and nature of active sites. J Mol Catal A Chem 301(1–2):159–165

    Article  Google Scholar 

  27. Thirumala bai P, Manokaran V, Saiprasad PS, Srinath S (2015) Studies on heat and mass transfer limitations in oxidative dehydrogenation of ethane over Cr2O3/Al2O3 Catalyst. Procedia Eng 127:1338–1345

    Article  Google Scholar 

  28. Grzybowska B, Słoczyński J, Grabowski R, Wcisło K, Kozłowska A, Stoch J, Zieliński J (1998) Chromium oxide/alumina catalysts in oxidative dehydrogenation of isobutane. J Catal 178(2):687–700.

    Article  Google Scholar 

  29. Cherian M, Rao MS, Yang WT, Jehng JM, Hirt AM, Deo G (2002) Oxidative dehydrogenation of propane over Cr2O3/Al2O3 and Cr2O3 catalysts: effects of loading, precursor and surface area. Appl Catal A 233(1–2):21–33

    Article  Google Scholar 

  30. Kung HH (1994) Oxidative dehydrogenation of light (C2 to C6) alkanes. Adv Catal 40(1)

    Google Scholar 

  31. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96(8):3327–3350

    Article  Google Scholar 

  32. Shen Z, Liu J, Xu H, Yue Y, Hua W, Shen W (2009) Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2. Appl Catal A 356(2):148–153

    Article  Google Scholar 

  33. Mentasty LR, Gorriz OF, Cadus LE (1999) Chromium oxide supported on different Al2O3 supports: catalytic propane dehydrogenation. Ind Eng Chem Res 38(2):396–404

    Article  Google Scholar 

  34. Mentasty LR, Gorriz OF, Cadus LE (2001) A study of chromia–alumina interaction by temperature-programmed reduction in dehydrogenation catalysts. Ind Eng Chem Res 40(1):136–143

    Article  Google Scholar 

  35. Ramesh Y, Bai PT, Babu BH, Lingaiah N, Rao KR, Prasad PS (2014) Oxidative dehydrogenation of ethane to ethylene on Cr2O3/Al2O3–ZrO2 catalysts: the influence of oxidizing agent on ethylene selectivity. Appl Petrochem Res 4(3):247–252

    Article  Google Scholar 

  36. Klimova T, Rojas ML, Castillo P, Cuevas R, Ramírez J (1998) Characterization of Al2O3–ZrO2 mixed oxide catalytic supports prepared by the sol-gel method. Microporous Mesoporous Mater 20(4–6):293–306

    Article  Google Scholar 

  37. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K (2001) Effect of promoters on catalytic performance of Cr/SiO2 catalysts in oxidative dehydrogenation of ethane with carbon dioxide. Catal Lett 73(2–4):107–111

    Article  Google Scholar 

  38. Yoo JS (1998) Selective gas-phase oxidation at oxide nanoparticles on microporous materials. Catal Today 41(4):409–432

    Article  Google Scholar 

  39. Rogelj J, Schaeffer M, Meinshausen M, Shindell DT, Hare W, Klimont Z, Schellnhuber HJ et al (2014) Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proc Natl Acad Sci 111(46):16325–16330

    Article  Google Scholar 

  40. Bai PT, Srinath S, Upendar K, Sagar TV, Lingaiah N, Rao KR, Prasad PS (2017) Oxidative dehydrogenation of ethane with carbon dioxide over Cr2O3/SBA-15 catalysts: the influence of sulfate modification of the support. Appl Petrochem Res 7(2–4):107–118

    Google Scholar 

  41. Botella P, Dejoz A, Nieto JL, Concepción P, Vázquez MI (2006) Selective oxidative dehydrogenation of ethane over MoVSbO mixed oxide catalysts. Appl Catal A 298:16–23

    Article  Google Scholar 

  42. Martinez-Huerta MV, Gao X, Tian H, Wachs IE, Fierro JLG, Banares MA (2006) Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: relationship between molecular structures and chemical reactivity. Catal Today 118(3–4):279–287

    Article  Google Scholar 

  43. Osawa T, Ruiz P, Delmon B (2000) New results on the oxidative dehydrogenation of ethane to ethylene: promoting catalytic performance of Mo-V- and Ni-V-oxide by α–Sb2O4. Catal Today 61(1–4):309–315

    Article  Google Scholar 

  44. Solsona B, Dejoz A, Garcia T, Concepción P, Nieto JL, Vázquez MI, Navarro MT (2006) Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catal Today 117(1–3):228–233

    Article  Google Scholar 

  45. Chao ZS, Ruckenstein E (2004) V–Mg–O prepared via a mesoporous pathway: a low-temperature catalyst for the oxidative dehydrogenation of propane to propene. Catal Lett 94(3–4):217–221

    Article  Google Scholar 

  46. Roussel M, Bouchard M, Karim K, Al-Sayari S, Bordes-Richard E (2006) MoVO-based catalysts for the oxidation of ethane to ethylene and acetic acid: influence of niobium and/or palladium on physicochemical and catalytic properties. Appl Catal A 308:62–74

    Article  Google Scholar 

  47. Zhu J, Qin S, Ren S, Peng X, Tong D, Hu C (2009) Na2WO4/Mn/SiO2 catalyst for oxidative dehydrogenation of ethane using CO2 as oxidant. Catal Today 148(3–4):310–315

    Article  Google Scholar 

  48. Ge X, Zhu M, Shen J (2002) Catalytic performance of silica-supported chromium oxide catalysts in ethane dehydrogenation with carbon dioxide. React Kinet Catal Lett 77(1):103–108

    Article  Google Scholar 

  49. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki F (2000) Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts. Appl Catal A 196(1):1–8

    Article  Google Scholar 

  50. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K (1999) Oxidative dehydrogenation of ethane by carbon dioxide over sulfate-modified Cr2O3/SiO2 catalysts. Catal Lett 63(1–2):59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, P.T., Rajmohan, K.S., Prasad, P.S.S., Srinath, S. (2019). Oxidative Dehydrogenation of Ethane to Ethylene Over Metal Oxide Catalysts Using Carbon Dioxide. In: Winter, F., Agarwal, R., Hrdlicka, J., Varjani, S. (eds) CO2 Separation, Purification and Conversion to Chemicals and Fuels. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3296-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3296-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3295-1

  • Online ISBN: 978-981-13-3296-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics