Skip to main content

Functional Films for Gas Sensing Applications: A Review

  • Chapter
  • First Online:
Sensors for Automotive and Aerospace Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

There are enormous functional materials which have been explored for gas sensing applications due to the fact that when a particular gas interacts with their surfaces, some alteration in their properties (optical, electrical, etc.) is observed. These functional materials are also termed as sensing films, to be utilized as one of the essential components in a gas sensor. Other components include electrodes connected with sensing film and data acquisition system coupled with it. During the past several decades, various metals, semiconductors, ceramics, and hybrid materials have been extensively explored for gas sensing applications. Selection of functional film is dependent on the gas to be detected. A gas sensor should have some characteristics, viz., higher sensitivity, selectivity for target gas, least response and recovery time, higher reproducibility, and stability. Therefore, selection of appropriate sensing film is highly required for a well-efficient gas sensor development. This article reviews the various kinds of sensing films, their fundamental aspects along with the sensing mechanisms. Morphological changes in the materials and doping of other functional materials also affect the performance of a gas sensor. Hence, issues related to the efficient gas sensing are also covered in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzhri R, Arshad MM, Fathil MFM, Hashim U, Ruslinda AR, Ayub RM, Azman AH (2015) Reactive ion etching of TiO2 thin film: the impact of different gaseous. In: 2015 IEEE regional symposium on micro and nanoelectronics (RSM). IEEE, pp 1–4

    Google Scholar 

  • Al-Hardan NH, Abdullah MJ, Aziz AA, Ahmad H, Low LY (2010) ZnO thin films for VOC sensing applications. Vacuum 85(1):101–106

    Article  Google Scholar 

  • Alizadeh T, Soltani LH (2013) Graphene/poly (methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing. J Hazard Mater 248:401–406

    Article  Google Scholar 

  • Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114(39):16168–16173

    Article  Google Scholar 

  • An X, Jimmy CY, Wang Y, Hu Y, Yu X, Zhang G (2012) WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem 22(17):8525–8531

    Article  Google Scholar 

  • Anand K, Singh O, Singh MP, Kaur J, Singh RC (2014) Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuators B Chem 195:409–415

    Article  Google Scholar 

  • Athawale AA, Kulkarni MV (2000) Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens Actuators B Chem 67(1–2):173–177

    Article  Google Scholar 

  • Awang Z (2014) Gas sensors: a review. Sens Transducers 168:61–75

    Google Scholar 

  • Bai S, Chen C, Luo R, Chen A, Li D (2015) Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances. Sens Actuators B Chem 216:113–120

    Article  Google Scholar 

  • Bandgar DK, Navale ST, Navale YH, Ingole SM, Stadler FJ, Ramgir N, Patil VB (2017) Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Mater Chem Phys 189:191–197

    Article  Google Scholar 

  • Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    Article  Google Scholar 

  • Cai YM, Qin ZY, Zhou Z (2012) Nanocoating of polyaniline layer on the surface of graphene sheets for ammonia gas detection. In: Advanced materials research, vol 557. Trans Tech Publications, pp 1803–1806

    Google Scholar 

  • Chang Y, Yao Y, Wang B, Luo H, Li T, Zhi L (2013) Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J Mater Sci Technol 29(2):157–160

    Article  Google Scholar 

  • Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 221:1170–1181

    Article  Google Scholar 

  • Chen N, Li X, Wang X, Yu J, Wang J, Tang Z, Akbar SA (2013a) Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens Actuators B Chem 188:902–908

    Article  Google Scholar 

  • Chen X, Yasin FM, Eggers PK, Boulos RA, Duan X, Lamb RN, Raston CL (2013b) Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv 3(10):3213–3217

    Article  Google Scholar 

  • Choi SJ, Ryu WH, Kim SJ, Cho HJ, Kim ID (2014a) Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J Mater Chem B 2(41):7160–7167

    Article  Google Scholar 

  • Choi SJ, Jang BH, Lee SJ, Min BK, Rothschild A, Kim ID (2014b) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6(4):2588–2597

    Article  Google Scholar 

  • Chung MG, Kim DH, Lee HM, Kim T, Choi JH, Kyun Seo D, Kim YH (2012a) Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens Actuators B Chem 166:172–176

    Article  Google Scholar 

  • Chung MG, Kim DH, Seo DK, Kim T, Im HU, Lee HM, Kim YH (2012b) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens Actuators B Chem 169:387–392

    Article  Google Scholar 

  • Cui S, Wen Z, Mattson EC, Mao S, Chang J, Weinert M, Hirschmugl CJ, Gajdardziska-Josifovskab M, Chen J (2013) Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J Mater Chem A 1:4462–4467

    Article  Google Scholar 

  • Cuong TV, Pham VH, Chung JS, Shin EW, Yoo DH, Hahn SH, Kohl PA (2010) Solution-processed ZnO-chemically converted graphene gas sensor. Mater Lett 64(22):2479–2482

    Article  Google Scholar 

  • Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134(10):4905–4917

    Article  Google Scholar 

  • Emmer I (1992) Thin film gas sensors. Int J Electron 1;73(5):875–879

    Article  Google Scholar 

  • Esfandiar A, Irajizad A, Akhavan O, Ghasemi S, Gholami MR (2014) Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int J Hydrogen Energy 39(15):8169–8179

    Article  Google Scholar 

  • Galkidas A, Marthunas Z, Setkus A (1992) Tin–indium oxide-based chlorine gas sensor. Sens Actuators B 7(1–3):633–636

    Google Scholar 

  • Gavgani JN, Dehsari HS, Hasani A, Mahyari M, Shalamzari EK, Salehi A, Taromi FA (2015) A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) nanocomposite. RSC Adv 5(71):57559–57567

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Dal Corso A (2009) Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  • Gomes EC, Oliveira MA (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2(2):5–13

    Google Scholar 

  • Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B Chem 219:94–99

    Article  Google Scholar 

  • Gupta A, Pandey SS, Bhattacharya S (2013) High aspect ZnO nanostructures based hydrogen sensing. In: AIP conference proceedings, vol 1536, no 1. AIP, pp 291–292

    Google Scholar 

  • Gupta A, Pandey SS, Nayak M, Maity A, Majumder SB, Bhattacharya S (2014a) Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles. RSC Adv 4(15):7476–7482

    Article  Google Scholar 

  • Gupta A, Srivastava A, Mathai CJ, Gangopadhyay K, Gangopadhyay S, Bhattacharya S (2014b) Nano porous palladium sensor for sensitive and rapid detection of hydrogen. Sensor Lett 12(8):1279–1285

    Article  Google Scholar 

  • Gupta A, Gangopadhyay S, Gangopadhyay K, Bhattacharya S (2016) Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing. Nanomater Nanotechnol 6:40

    Article  Google Scholar 

  • Gusain A, Joshi NJ, Varde PV, Aswal DK (2017) Flexible NO gas sensor based on conducting polymer poly [N-9′-heptadecanyl-2, 7-carbazole-alt-5, 5-(4′, 7′-di-2-thienyl-2′, 1′, 3′-benzothiadiazole)](PCDTBT). Sens Actuators B Chem 239:734–745

    Article  Google Scholar 

  • He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19):2994–2999

    Article  Google Scholar 

  • He JQ, Yin J, Liu D, Zhang LX, Cai FS, Bie LJ (2013) Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO structure composed of nanorods. Sens Actuators B Chem 182:170–175

    Article  Google Scholar 

  • Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T (2015) A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl Mater Interfaces 7(6):3554–3561

    Article  Google Scholar 

  • Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ESW, Zhang Y (2012) Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens Actuators B Chem 163(1):107–114

    Article  Google Scholar 

  • Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Zhang Y (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22(42):22488–22495

    Article  Google Scholar 

  • Huang XL, Hu NT, Wang YY, Zhang YF (2013) Ammonia gas sensor based on aniline reduced graphene oxide. In: Advanced materials research, vol 669. Trans Tech Publications, pp 79–84

    Google Scholar 

  • Inyawilert K, Wisitsoraat A, Sriprachaubwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sens Actuators B Chem 209:40–55

    Article  Google Scholar 

  • Jaisutti R, Kim J, Park SK, Kim YH (2016) Low-temperature photochemically activated amorphous indium-gallium-zinc oxide for highly stable room-temperature gas sensors. ACS Appl Mater Interfaces 8(31):20192–20199

    Article  Google Scholar 

  • Jeong CW, Shin CH, Kim DI, Chae JH, Kim YS (2010a) An ITO/au/ITO thin film gas sensor for methanol detection at room temperature. Trans Electr Electron Mater 11(2):77–80

    Article  Google Scholar 

  • Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, Choi SY (2010b) Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett 96(21):213105

    Article  Google Scholar 

  • Jiang Z, Li J, Aslan H, Li Q, Li Y, Chen M, Besenbacher F (2014) A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J Mater Chem A 2(19):6714–6717

    Article  Google Scholar 

  • Kaniyoor A, Jafri RI, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3):382–386

    Article  Google Scholar 

  • Karaduman I, Er E, Çelikkan H, Acar S (2015) A new generation gas sensing material based on high-quality graphene. Sens Actuators B Chem 221:1188–1194

    Article  Google Scholar 

  • Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56(3):159–172

    Article  Google Scholar 

  • Kim Y, An TK, Kim J, Hwang J, Park S, Nam S, Park CE (2014) A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. J Mater Chem C 2(23):4539–4544

    Article  Google Scholar 

  • Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, Plecenik A (2017) Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens Actuators B Chem 240:1058–1065

    Article  Google Scholar 

  • Kumar N, Srivastava AK, Patel HS, Gupta BK, Das Varma G (2015) Facile synthesis of ZnO-reduced graphene oxide, nanocomposites for NO2 gas sensing applications. Eur J Inorg Chem 2015:1912–1923

    Article  Google Scholar 

  • Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B Chem. 1(240):408–416

    Article  Google Scholar 

  • Latil S, Roche S, Mayou D, Charlier JC (2004) Mesoscopic transport in chemically doped carbon nanotubes. Phys Rev Lett 92(25):256805

    Article  Google Scholar 

  • Lee DS, Jung JK, Lim JW, Huh JS, Lee DD (2001) Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sens Actuators B Chem 77(1–2):228–236

    Article  Google Scholar 

  • Lee J-H, Katoch A, Choi S-W, Kim J-H, Kim HW, Kim SS (2015) Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interface 7:3101–3109

    Article  Google Scholar 

  • Li X, Chen X, Yao Y, Li N, Chen X, Bi X (2013) Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sens J 13(12):4749–4756

    Article  Google Scholar 

  • Lin WD, Chang HM, Wu RJ (2013) Applied novel sensing material graphene/polypyrrole for humidity sensor. Sens Actuators B Chem 181:326–331

    Article  Google Scholar 

  • Liu F, Chu X, Dong Y, Zhang W, Sun W, Shen L (2013) Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens Actuators B Chem 188:469–474

    Article  Google Scholar 

  • Liu S, Yu B, Zhang H, Fei T, Zhang T (2014a) Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B Chem 202:272–278

    Article  Google Scholar 

  • Liu X, Cui J, Sun J, Zhang X (2014b) 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv 4(43):22601–22605

    Article  Google Scholar 

  • Liu S, Zhou L, Yao L, Chai L, Li L, Zhang G, Shi K (2014c) One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature. J Alloy Compd 612:126–133

    Article  Google Scholar 

  • Liu S, Wang Z, Zhang Y, Zhang C, Zhang T (2015a) High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens Actuators B Chem 211:318–324

    Article  Google Scholar 

  • Liu X, Sun J, Zhang X (2015b) Novel 3D graphene aerogel–ZnO composites as efficient detection for NO2 at room temperature. Sens Actuators B Chem 211:220–226

    Article  Google Scholar 

  • Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Array-based vapor sensing using chemically sensitive, carbon black–polymer resistors. Chem Mater 12;8(9):2298–2312

    Article  Google Scholar 

  • Ma C, Shao X, Cao D (2014) Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Sci China Chem 57(6):911–917

    Article  Google Scholar 

  • MacDiarmid AG (1996) The polyanilines: a novel class of conducting polymers. University of Pennsylvania

    Google Scholar 

  • Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J (2012) Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J Mater Chem 22(22):11009–11013

    Article  Google Scholar 

  • Meng H, Yang W, Ding K, Feng L, Guan Y (2015) Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J Mater Chem A 3(3):1174–1181

    Article  Google Scholar 

  • Min Y (2003) Properties and sensor performance of zinc oxide thin films. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  • Nafarizal N (2016) Precise control of metal oxide thin films deposition in magnetron sputtering plasmas for high performance sensing devices fabrication. Procedia Chem 20:93–97

    Article  Google Scholar 

  • Nemade KR, Waghuley SA (2013) LPG sensing application of graphene/Bi2O3 quantum dots composites. Solid State Sci 22:27–32

    Article  Google Scholar 

  • Nemade KR, Waghuley SA (2014a) Role of defects concentration on optical and carbon dioxide gas sensing properties of Sb2O3/graphene composites. Opt Mater 36(3):712–716

    Article  Google Scholar 

  • Nemade KR, Waghuley SA (2014b) Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J Phys 88(6):577–583

    Article  Google Scholar 

  • Nemade KR, Waghuley SA (2014c) Preparation of MnO2 immobilized graphene nanocomposite by solid state diffusion route for LPG sensing. J Lumin 153:194–197

    Article  Google Scholar 

  • Niu F, Liu JM, Tao LM, Wang W, Song WG (2013) Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A 1(20):6130–6133

    Article  Google Scholar 

  • Niu F, Tao LM, Deng YC, Wang QH, Song WG (2014) Phosphorus doped graphene nanosheets for room temperature NH3 sensing. New J Chem 38(6):2269–2272

    Article  Google Scholar 

  • Öztürk S, Kılınç N (2016) Pd thin films on flexible substrate for hydrogen sensor. J Alloy Compd 674:179–184

    Article  Google Scholar 

  • Pak Y, Kim SM, Jeong H, Kang CG, Park JS, Song H, Kim JT (2014) Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons. ACS Appl Mater Interfaces 6(15):13293–13298

    Article  Google Scholar 

  • Parmar M, Balamurugan C, Lee DW (2013) PANI and graphene/PANI nanocomposite films—comparative toluene gas sensing behavior. Sensors 13(12):16611–16624

    Article  Google Scholar 

  • Patel NG, Makhija KK, Panchal CJ (1994) Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films. Sens Actuators B Chem 21(3):193–197

    Article  Google Scholar 

  • Patel NG, Makhija KK, Panchal CJ, Dave DB, Vaishnav VS (1995) Fabrication of carbon tetrachloride gas sensors using indium tin oxide thin films. Sens Actuators B Chem 23(1):49–53

    Article  Google Scholar 

  • Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuators B Chem 96(1–2):180–189

    Article  Google Scholar 

  • Pawar SG, Chougule MA, Patil SL, Raut BT, Godse PR, Sen S, Patil VB (2011) Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens J 11(12):3417–3423

    Article  Google Scholar 

  • Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21(43):17167–17174

    Article  Google Scholar 

  • Ranade RM, Ang SS, Brown WD (1993) Reactive ion etching of thin gold films. J Electrochem Soc 140(12):3676–3678

    Article  Google Scholar 

  • Ruangchuay L, Sirivat A, Schwank J (2004) Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synth Met 140(1):15–21

    Article  Google Scholar 

  • Sberveglieri G, Groppelli S, Coccoli G (1988) Radio frequency magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin films for NO2 gas sensors. Sens Actuators 15(3):235–242

    Article  Google Scholar 

  • Sberveglieri G, Benussi P, Coccoli G, Groppelli S, Nelli P (1990) Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors. Thin Solid Films 186(2):349–360

    Article  Google Scholar 

  • Shafiei M, Arsat R, Yu J, Kalantar-Zadeh K, Wlodarski W, Dubin S, Kaner RB (2009) Pt/graphene nano-sheet based hydrogen gas sensor. In: Sensors, 2009 IEEE. IEEE, pp 295–298

    Google Scholar 

  • Singh G, Choudhary A, Haranath D, Joshi AG, Singh N, Singh S, Pasricha R (2012) ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50(2):385–394

    Article  Google Scholar 

  • Song N, Fan H, Tian H (2015) PVP assisted in situ synthesis of functionalized graphene/ZnO (FGZnO) nanohybrids with enhanced gas-sensing property. J Mater Sci 50(5):2229–2238

    Article  Google Scholar 

  • Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 23(20):205501

    Article  Google Scholar 

  • Stafström S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59(13):1464

    Article  Google Scholar 

  • Su PG, Peng SL (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405

    Article  Google Scholar 

  • Su PG, Shieh HC (2014) Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens Actuators B Chem 190:865–872

    Article  Google Scholar 

  • Thubsuang U, Sukanan D, Sahasithiwat S, Wongkasemjit S, Chaisuwan T (2015) Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite. Mater Sci Eng B 200:67–77

    Article  Google Scholar 

  • Tien HN, Chung JS, Hur SH (2013) Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens Actuators B Chem 185:701–705

    Article  Google Scholar 

  • Uddin AI, Lee KW, Chung GS (2015a) Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens Actuators B Chem 216:33–40

    Article  Google Scholar 

  • Uddin AI, Phan DT, Chung GS (2015b) Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens Actuators B Chem 207:362–369

    Article  Google Scholar 

  • Van Quang V, Van Dung N, Sy Trong N, Duc Hoa N, Van Duy N, Van Hieu N (2014) Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl Phys Lett 105(1):013107

    Article  Google Scholar 

  • Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sens Actuators B Chem 218:160–183

    Article  Google Scholar 

  • Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators B Chem 178:485–493

    Article  Google Scholar 

  • Xue L, Wang W, Guo Y, Liu G, Wan P (2017) Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sens Actuators B Chem 244:47–53

    Article  Google Scholar 

  • Yang YJ, Yang XJ, Yang WY, Li SB, Xu JH, Jiang YD (2014a) Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection. RSC Adv 4:42546–42553

    Article  Google Scholar 

  • Yang Y, Tian C, Wang J, Sun L, Shi K, Zhou W, Fu H (2014b) Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale 6(13):7369–7378

    Article  Google Scholar 

  • Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

    Article  Google Scholar 

  • Ye Z, Jiang Y, Tai H, Yuan Z (2014) The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr Ferroelectr 154(1):73–81

    Article  Google Scholar 

  • Ye Z, Jiang Y, Tai H, Guo N, Xie G, Yuan Z (2015) The investigation of reduced graphene oxide@ SnO2-polyaniline composite thin films for ammonia detection at room temperature. J Mater Sci Mater Electron 26(2):833–841

    Article  Google Scholar 

  • Yoo S, Li X, Wu Y, Liu W, Wang X, Yi W (2014) Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J Nanomater 2014

    Google Scholar 

  • Zhang J, Hu JQ, Zhu FR, Gong H, O’shea SJ (2002) ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sens Actuators B Chem 87(1):159–167

    Article  Google Scholar 

  • Zhang Z, Zou R, Song G, Yu L, Chen Z, Hu J (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21(43):17360–17365

    Article  Google Scholar 

  • Zhang J, Zhao C, Hu PA, Fu YQ, Wang Z, Cao W, Placido F (2013) A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature. RSC Adv 3(44):22185–22190

    Article  Google Scholar 

  • Zhang H, Feng J, Fei T, Liu S, Zhang T (2014a) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B Chem 190:472–478

    Article  Google Scholar 

  • Zhang H, Wang L, Zhang T (2014b) Reduced graphite oxide/SnO2/Au hybrid nanomaterials for NO2 sensing performance at relatively low operating temperature. RSC Adv 4(101):57436–57441

    Article  Google Scholar 

  • Zhang D, Liu J, Chang H, Liu A, Xia B (2015a) Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv 5(24):18666–18672

    Article  Google Scholar 

  • Zhang D, Liu A, Chang H, Xia B (2015b) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 5(4):3016–3022

    Article  Google Scholar 

  • Zhou L, Shen F, Tian X, Wang D, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4):1564–1569

    Article  Google Scholar 

  • Zhou X, Wang X, Wang B, Chen Z, He C, Wu Y (2014a) Preparation, characterization and NH3-sensing properties of reduced graphene oxide/copper phthalocyanine hybrid material. Sens Actuators B Chem 193:340–348

    Article  Google Scholar 

  • Zhou Y, Jiang Y, Xie G, Wu M, Tai H (2014b) Gas sensors for CO2 detection based on RGO–PEI films at room temperature. Chin Sci Bull 59(17):1999–2005

    Article  Google Scholar 

  • Zhu L, Jia Y, Gai G, Ji X, Luo J, Yao Y (2014) Ambipolarity of large-area Pt-functionalized graphene observed in H2 sensing. Sens Actuators B Chem 190:134–140

    Article  Google Scholar 

  • Zito CA, Perfecto TM, Volanti DP (2017) Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens Actuators B Chem 244:466–474

    Article  Google Scholar 

  • Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J (2013) ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J Mater Chem A 1(29):8445–8452

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Parida, P.K., Pal, P. (2019). Functional Films for Gas Sensing Applications: A Review. In: Bhattacharya, S., Agarwal, A., Prakash, O., Singh, S. (eds) Sensors for Automotive and Aerospace Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3290-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3290-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3289-0

  • Online ISBN: 978-981-13-3290-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics