Development of Small-Scale Thermoelectric Power Generators Using Different Micro-combustor Configurations for Standalone Power Applications

  • B. AravindEmail author
  • Sudarshan Kumar
Part of the Energy, Environment, and Sustainability book series (ENENSU)


In the present study, few highly efficient micro-combustors suitable for thermoelectric power generation are fabricated. The micro-combustors consist of multiple backward facing steps and a heat recirculating cup for proper flame stabilisation. A detailed experimental investigation on the thermal performance of the micro-combustors was carried out initially and thermoelectric generators were integrated to the bare surfaces of the combustor along with the cooling jackets for the power generation. The power output of 3.89 W with a conversion efficiency of 4.03%, the power output of 3.2 W with a conversion efficiency of 3.39% and power output of 4.5 W with a conversion efficiency of 4.66% are achieved for planar, triangular, and dual micro-combustor based power generators respectively. These results represent an improvement in portable-scale electrical power production from hydrocarbon fuels state of the art. Moreover, the power characteristics ensure the use of a proposed small-scale power generator for various aerospace and defence applications as a portable power source.


Thermoelectric generator Micro-combustor Flame stability Conversion efficiency 


  1. Anil AD, Bhupendra K, Sudarshan K (2011) Flame stabilization studies in a three backward facing step configuration based microcombustor with premixed methane-air mixturesGoogle Scholar
  2. Aravind B, Kumar S (2016) Parametric studies on thermo-electric power generation using micro combustor. In: Techno-societal 2016, international conference on advanced technologies for societal applications. SpringerGoogle Scholar
  3. Aravind B, Velamati RK, Singh AP, Yoon Y, Minaev S, Kumar S (2016) Investigations on flame dynamics of premixed H2–air mixtures in microscale tubes. RSC Adv 6(55):50358–50367CrossRefGoogle Scholar
  4. Aravind B, Khandelwal B, Kumar S (2018a) Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator. Appl Energy 228:1173–1181CrossRefGoogle Scholar
  5. Aravind B, Raghuram GK, Kishore VR, Kumar S (2018b) Compact design of planar stepped micro combustor for portable thermoelectric power generation. Energy Convers Manag 156:224–234CrossRefGoogle Scholar
  6. Chen M, Buckmaster J (2004) Modelling of combustion and heat transfer in Swiss roll micro-scale combustors. Combust Theor Model 8(4):701–720CrossRefGoogle Scholar
  7. Chou S, Yang W, Chua K, Li J, Zhang K (2011) Development of micro power generators—a review. Appl Energy 88(1):1–16CrossRefGoogle Scholar
  8. Fernandez-Pello AC (2002) Micropower generation using combustion: issues and approaches. Proc Combust Inst 29(1):883–899CrossRefGoogle Scholar
  9. Hardesty D, Weinberg F (1973) Burners producing large excess enthalpies. Combust Sci Technol 8(5–6):201–214CrossRefGoogle Scholar
  10. Ju Y, Maruta K (2011) Microscale combustion: technology development and fundamental research. Prog Energy Combust Sci 37(6):669–715CrossRefGoogle Scholar
  11. Khandelwal B, Kumar S (2010) Experimental investigations on flame stabilization behavior in a diverging micro channel with premixed methane–air mixtures. Appl Therm Eng 30(17–18):2718–2723CrossRefGoogle Scholar
  12. Khandelwal B, Sahota GPS, Kumar S (2010) Investigations into the flame stability limits in a backward step micro scale combustor with premixed methane–air mixtures. J Micromech Microeng 20(9):095030CrossRefGoogle Scholar
  13. Khandelwal B, Deshpande AA, Kumar S (2013) Experimental studies on flame stabilization in a three step rearward facing configuration based micro channel combustor. Appl Therm Eng 58(1–2):363–368CrossRefGoogle Scholar
  14. Kim NI, Kato S, Kataoka T, Yokomori T, Maruyama S, Fujimori T, Maruta K (2005) Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust Flame 141(3):229–240CrossRefGoogle Scholar
  15. Kim NI, Aizumi S, Yokomori T, Kato S, Fujimori T, Maruta K (2007) Development and scale effects of small Swiss-roll combustors. Proc Combust Inst 31(2):3243–3250CrossRefGoogle Scholar
  16. Lee DH, Kwon S (2002) Heat transfer and quenching analysis of combustion in a micro combustion vessel. J Micromech Microeng 12(5):670CrossRefGoogle Scholar
  17. Lee S, Um D, Kwon O (2013) Performance of a micro-thermophotovoltaic power system using an ammonia-hydrogen blend-fueled micro-emitter. Int J Hydrogen Energy 38(22):9330–9342CrossRefGoogle Scholar
  18. Li YH, Lien YS, Chao YC, Dunn-Rankin D (2009) Performance of a mesoscale liquid fuel-film combustion-driven TPV power system. Prog Photovoltaics Res Appl 17(5):327–336CrossRefGoogle Scholar
  19. Maruta K (2011) Micro and mesoscale combustion. Proc Combust Inst 33(1):125–150MathSciNetCrossRefGoogle Scholar
  20. Maruta K, Kataoka T, Kim NI, Minaev S, Fursenko R (2005) Characteristics of combustion in a narrow channel with a temperature gradient. Proc Combust Inst 30(2):2429–2436CrossRefGoogle Scholar
  21. Merotto L, Fanciulli C, Dondè R, De Iuliis S (2016) Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor. Appl Energy 162:346–353CrossRefGoogle Scholar
  22. Park J, Lee S, Wu H, Kwon O (2012) Thermophotovoltaic power conversion from a heat-recirculating micro-emitter. Int J Heat Mass Transf 55(17–18):4878–4885CrossRefGoogle Scholar
  23. Qiu K, Hayden A (2012) Development of a novel cascading TPV and TE power generation system. Appl Energy 91(1):304–308CrossRefGoogle Scholar
  24. Ronney PD (2003) Analysis of non-adiabatic heat-recirculating combustors. Combust Flame 135(4):421–439CrossRefGoogle Scholar
  25. Sahota GPS, Khandelwal B, Kumar S (2011) Experimental investigations on a new active swirl based microcombustor for an integrated micro-reformer system. Energy Convers Manag 52(10):3206–3213CrossRefGoogle Scholar
  26. Shimokuri D, Taomoto Y, Matsumoto R (2017) Development of a powerful miniature power system with a meso-scale vortex combustor. Proc Combust Inst 36(3):4253–4260CrossRefGoogle Scholar
  27. Singh AP, RatnaKishore V, Minaev S, Kumar S (2015) Numerical investigations of unsteady flame propagation in stepped microtubes. RSC Adv 5(122):100879–100890CrossRefGoogle Scholar
  28. Singh AP, Kishore V, Yoon Y, Minaev S, Kumar S (2017) Effect of wall thermal boundary conditions on flame dynamics of CH4-air and H2-air mixtures in straight microtubes. Combust Sci Technol 189(1):150–168CrossRefGoogle Scholar
  29. Taywade UW, Deshpande AA, Kumar S (2013) Thermal performance of a micro combustor with heat recirculation. Fuel Process Technol 109:179–188CrossRefGoogle Scholar
  30. Walther DC, Ahn J (2011) Advances and challenges in the development of power-generation systems at small scales. Prog Energy Combust Sci 37(5):583–610CrossRefGoogle Scholar
  31. Yadav S, Yamasani P, Kumar S (2015) Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manag 99:1–7CrossRefGoogle Scholar
  32. Yang W, Chou S, Shu C, Li Z, Xue H (2002) Combustion in micro-cylindrical combustors with and without a backward facing step. Appl Therm Eng 22(16):1777–1787CrossRefGoogle Scholar
  33. Yang W, Chua K, Pan J, Jiang D, An H (2014) Development of micro-thermophotovoltaic power generator with heat recuperation. Energy Convers Manag 78:81–87CrossRefGoogle Scholar
  34. Yoshida K, Tanaka S, Tomonari S, Satoh D, Esashi M (2006) High-energy density miniature thermoelectric generator using catalytic combustion. J. Microelectromech Syst 15(1):195–203CrossRefGoogle Scholar
  35. Zhou J, Wang Y, Yang W, Liu J, Wang Z, Cen K (2009) Combustion of hydrogen–air in catalytic micro-combustors made of different material. Int J Hydrogen Energy 34(8):3535–3545CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Combustion Research Laboratory, Department of Aerospace EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations