Skip to main content

Strategies for Collection, Treatment, and Recycling of Fly Ash from Thermal Power Plants

  • Chapter
  • First Online:
Pollutants from Energy Sources

Abstract

Coal-based thermal power plants cater to a larger fraction of power generation and supply in developing countries including India. However, after electrostatic precipitation of finer ash particles from flue gases, a huge amount of fly ash is produced in these plants as a solid waste. The fly ash consists of silica, alumina, oxides of iron, calcium, magnesium, heavy metals, and organic compounds. The disposal of fly ash in conventional ash ponds and landfills may further cause soil and groundwater pollution and requires proper management. This chapter provides a detailed review about the pollutions caused by the fly ash as well as current strategies for their collection, treatment, and recycling. Different strategies of recycling and reuse are reviewed and discussed including applications for construction materials and in pollution abatement, thus acting as a useful resource rather than a waste product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hamouz Z (2014) Numerical and experimental evaluation of fly ash collection efficiency in electrostatic precipitators. Energy Convers Manag 79:487–497

    Article  Google Scholar 

  • American Coal Ash Association (2003) Fly ash facts for highway engineers, 1–74

    Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  Google Scholar 

  • Bayat B (2002) Comparative study of adsorption properties of Turkish fly ashes: II. The case of chromium (VI) and cadmium (II). J Hazard Mater 95(3):275–290

    Article  Google Scholar 

  • Bayuseno AP, Schmahl WW (2011) Characterization of MSWI fly ash through mineralogy and water extraction. Resour Conserv Recycl 55(5):524–534

    Article  Google Scholar 

  • Bhattacharya A, Naiya T, Mandal S, Das S (2008) Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137(3):529–541

    Google Scholar 

  • Chandel S, Seshadri V, Singh SN (2009) Effect of additive on pressure drop and rheological characteristics of fly ash slurry at high concentration. Part Sci Technol 27:271–284

    Article  Google Scholar 

  • Chang F-Y, Wey M-Y (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater 138(3):594–603

    Article  Google Scholar 

  • Chaturvedi A, Yadava K, Pathak K, Singh V (1990) Defluoridation of water by adsorption on fly ash. Water Air Soil Pollut 49(1–2):51–61

    Article  Google Scholar 

  • Chaudhary S, Banerjee DK (2007) Speciation of some heavy metals in coal fly ash. Chem Speciat Bioavailab 19(3):95–102

    Article  Google Scholar 

  • Chimenos J, Fernández A, Cervantes A, Miralles L, Fernández M, Espiell F (2005) Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manag 25(7):686–693

    Article  Google Scholar 

  • Chindaprasirt P, Rukzon S, Sirivivatnanon V (2008) Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr Build Mater 22(5):932–938

    Article  Google Scholar 

  • Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag 29(2):539–543

    Article  Google Scholar 

  • Cornelis G, Johnson CA, Van Gerven T, Vandecasteele C (2008) Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Appl Geochem 23(5):955–976

    Article  Google Scholar 

  • Davidson CI, Phalen RF, Solomon PA (2005) Airborne particulate matter and human health: a review. Aerosol Sci Technol 39(8):737–749

    Article  Google Scholar 

  • Derie R (1996) A new way to stabilize fly ash from municipal incinerators. Waste Manag 16(8):711–716

    Article  Google Scholar 

  • Diaz-Loya EI, Allouche EN, Eklund S, Joshi AR, Kupwade-Patil K (2012) Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash. Waste Manag 32(8):1521–1527

    Article  Google Scholar 

  • Dreher KL, Jaskot RH, Lehmann JR, Richards JH, Ghio JKMAJ, Costa DL (1997) Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health Part A 50(3):285–305

    Article  Google Scholar 

  • Ecke H, Menad N, Lagerkvist A (2003) Carbonation of municipal solid waste incineration fly ash and the impact on metal mobility. J Environ Eng 129(5):435–440

    Article  Google Scholar 

  • Edil TB, Acosta HA, Benson CH (2006) Stabilizing soft fine-grained soils with fly ash. J Mater Civ Eng 18(2):283–294

    Article  Google Scholar 

  • Eighmy TT, Crannell BS, Butler LG, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 31(11):3330–3338

    Article  Google Scholar 

  • Eleonora L, Margarida J (2016) Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up. ACS Sustain Chem

    Google Scholar 

  • Francois D, Criado C (2007) Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator. J Hazard Mater 139(3):543–549

    Article  Google Scholar 

  • George J, Masto RE, Ram LC, Das TB, Rout TK, Mohan M (2015) Human exposure risks for metals in soil near a coal-fired power-generating plant. Arch Environ Contam Toxicol 68(3):451–461

    Article  Google Scholar 

  • Ghosh A (2009) Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. J Mater Civ Eng 22(4):343–351

    Article  Google Scholar 

  • GoI (2018) Annual report 2017–18, pp 1–276. Ministry of Power, Government of India

    Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1998) Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19(2):129–136

    Article  Google Scholar 

  • Gupta V, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212

    Article  Google Scholar 

  • He Y, Luo Q, Hu H (2012) Situation analysis and countermeasures of China’s fly ash pollution prevention and control. Procedia Environ Sci 16:690–696

    Article  Google Scholar 

  • Jakob A, Stucki S, Kuhn P (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ Sci Technol 29(9):2429–2436

    Article  Google Scholar 

  • Jakob A, Stucki S, Struis RPWJ (1996) Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates. Environ Sci Technol 30(11):3275–3283

    Article  Google Scholar 

  • Katsuura H, Inoue T, Hiraoka M, Sakai S (1996) Full-scale plant study on fly ash treatment by the acid extraction process. Waste Manag 16(5–6):491–499

    Article  Google Scholar 

  • Kim K-H, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143

    Article  Google Scholar 

  • Kumar Bera A, Ghosh A, Ghosh A (2007) Compaction characteristics of pond ash. J Mater Civ Eng 19(4):349–357

    Article  Google Scholar 

  • Lee SH, Sakai E, Daimon M, Bang WK (1999) Characterization of fly ash directly collected from electrostatic precipitator. Cem Concr Res 29(11):1791–1797

    Article  Google Scholar 

  • Li J, Maroto-Valer MM (2012) Computational and experimental studies of mercury adsorption on unburned carbon present in fly ash. Carbon 50(5):1913–1924

    Article  Google Scholar 

  • Lundtorp K, Jensen DL, Christensen TH (2002) Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale. J Air Waste Manag Assoc 52(6):722–731

    Article  Google Scholar 

  • Mandal PK, Mandal TK (1996) Electrostatic precipitator performance in Indian pulverized coal based thermal power stations: problems and solutions. Water Energy Res Dig 19(4):31–40

    Google Scholar 

  • Nemade P, Rao AV, Alappat B (2002) Removal of fluorides from water using low cost adsorbents. Water Sci Technol Water Supply 2(1):311–317

    Article  Google Scholar 

  • Newman JR (1979) Effects of industrial air pollution on wildlife. Biol Cons 15(3):181–190

    Article  Google Scholar 

  • Nzihou A, Sharrock P (2002) Calcium phosphate stabilization of fly ash with chloride extraction. Waste Manag 22(2):235–239

    Article  Google Scholar 

  • Ondova M, Stevulova N, Estokova A (2012) The study of the properties of fly ash based concrete composites with various chemical admixtures. Procedia Eng 42:1863–1872

    Article  Google Scholar 

  • Panday K, Prasad G, Singh V (1984) Removal of Cr (V1) from aqueous solutions by adsorption on fly ash-wollastonite. J Chem Technol Biotechnol 34(7):367–374

    Article  Google Scholar 

  • Pandey VC, Singh JS, Singh RP, Singh N, Yunus M (2011) Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour Conserv Recycl 55(9):819–835

    Article  Google Scholar 

  • Pedersen AJ, Ottosen LM, Villumsen A (2003) Electrodialytic removal of heavy metals from different fly ashes: influence of heavy metal speciation in the ashes. J Hazard Mater 100(1–3):65–78

    Article  Google Scholar 

  • Pedersen AJ, Kristensen IV, Ottosen LM, Ribeiro AB, Villumsen A (2005) Electrodialytic remediation of CCA-treated waste wood in pilot scale. Eng Geol 77(3–4):331–338

    Article  Google Scholar 

  • Rajgor MB, Makwana AH, Pitroda J (2013) Automation in clay and thermal industry waste products. Int J Eng Trends Technol 4(7):2870–2877

    Google Scholar 

  • Rao M, Parwate A, Bhole A (2002) Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manag 22(7):821–830

    Article  Google Scholar 

  • Ribeiro J, Silva TF, Mendonça Filho JG, Flores D (2014) Fly ash from coal combustion—an environmental source of organic compounds. Appl Geochem 44:103–110

    Article  Google Scholar 

  • Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C (2003) Management of municipal solid waste incineration residues. Waste Manag 23(1):61–88

    Article  Google Scholar 

  • Shanthakumar S, Singh D, Phadke R (2008) Influence of flue gas conditioning on fly ash characteristics. Fuel 87(15–16):3216–3222

    Article  Google Scholar 

  • Sharma S, Dhir AG (2015) Assessment of the use of steel slag and/or air pollution control devices dust in the manufacturing of fly ash bricks/blocks

    Google Scholar 

  • Shehata MH, Thomas MDA, Bleszynski RF (1999) The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cem Concr Res 29(12):1915–1920

    Article  Google Scholar 

  • Spadoni M, Voltaggio M, Sacchi E, Sanam R, Pujari PR, Padmakar C, Labhasetwar PK, Wate SR (2014) Impact of the disposal and re-use of fly ash on water quality: the case of the Koradi and Khaperkheda thermal power plants (Maharashtra, India). Sci Total Environ 479–480:159–170

    Article  Google Scholar 

  • Takaoka M, Takeda N, Fujiwara T (2000) Experimental studies on the removal mechanism of mercury vapor by synthetic fly ash. J Jpn Soc Atmos Environ (Taiki Kankyo Gakkaishi) 35(1):51–62

    Google Scholar 

  • Tang Q, Liu Y, Gu F, Zhou T (2016) Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement. Adv Mater Sci Eng

    Google Scholar 

  • Thomas M (2007) Optimizing the use of fly ash in concrete, vol 5420. Portland Cement Association Skokie, IL

    Google Scholar 

  • Thomas M, Hopkins D, Girn G, Munro R, Muhl E (2002) The use of high-volume fly ash in concrete. In: Proceedings, 7th international gypsum and fly ash science and technology conference, Toronto

    Google Scholar 

  • Tor A, Danaoglu N, Arslan G, Cengeloglu Y (2009) Removal of fluoride from water by using granular red mud: batch and column studies. J Hazard Mater 164(1):271–278

    Article  Google Scholar 

  • Uchida T, Itoh I, Harada K (1996) Immobilization of heavy metals contained in incinerator fly ash by application of soluble phosphate—treatment and disposal cost reduction by combined use of “High Specific Surface Area Lime”. Waste Manag 16(5–6):475–481

    Article  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122(3):435–445

    Article  Google Scholar 

  • Wang Q, Yang J, Wang Q, Wu T (2009) Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater 162(2–3):812–818

    Article  Google Scholar 

  • Weibel G, Eggenberger U, Kulik DA, Hummel W, Schlumberger S, Klink W, Fisch M, Mäder UK (2018) Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag

    Google Scholar 

  • Yadava K, Tyagi B, Panday K, Singh V (1987) Fly ash for the treatment of Cd (II) rich effluents. Environ Technol 8(1–12):225–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Swatantra Pratap Singh or Amritanshu Shriwastav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratap Singh, S., Shriwastav, A., Gupta, A. (2019). Strategies for Collection, Treatment, and Recycling of Fly Ash from Thermal Power Plants. In: Agarwal, R., Agarwal, A., Gupta, T., Sharma, N. (eds) Pollutants from Energy Sources. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3281-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3281-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3280-7

  • Online ISBN: 978-981-13-3281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics