Advertisement

Advanced Source Inversion Module of the JRODOS System

  • Ivan KovaletsEmail author
  • Spyros Andronopoulos
  • Radek Hofman
  • Petra Seibert
  • Ievgen Ievdin
  • Oleksandr Pylypenko
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

The development of the source inversion algorithm is described which allows for estimation of the release rates of multiple nuclides and source height with the use of gamma dose rate (GDR) measurements. The method is applicable for the dispersion problems of different spatial scales: from ~1 to ~1000 km. The variational formulation of source inversion problem is used in which unknown release rates of different nuclides are adjusted to minimize the difference of calculated values and measurements. The sensitivities of calculated results with respect to release rates of different radionuclides are calculated with the aid of atmospheric transport model DIPCOT and the source receptor matrix (SRM) is thus constructed. The source inversion problem is regularized using prior (first guess) estimation of release rates. The method is proposed to account for the restrictions on the ratios of the release rates of different radionuclides in formulation of source inversion problem which allows for the assessment of the nuclide composition in radioactive release. The above restrictions are evaluated using the first guess source term. Parameterizations for the regularization parameters of source inversion problem which include root mean squared errors of measurents, first guess release rates, calculated values etc., are developed. The method was successfully tested using artificial measurements precalculated for the conditions of the ETEX experiment. Pilot implementation of the developed algorithm in the European nuclear emergency response system JRODOS is described.

Keywords

Inverse problem Source term estimation Radioactive release RODOS 

Notes

Acknowledgements

The presented research was supported with the EURATOM grant No.323287. I. Kovalets was also supported with the grant of the President of Ukrane No. Φ78/40053.

References

  1. Andronopoulos S, Davakis E, Bartzis JG (2009) RODOS-DIPCOT model description and evaluation. Report RODOS(RA2)-TN(09)01. Available at: https://www.researchgate.net/publication/228862960_RODOS-DIPCOT_Model_Description_and_Evaluation, last accessed 2018/06/01
  2. Andronopoulos S, Bartzis JG (2010) Gamma radiation dose calculation method for Lagrangian-puff atmospheric dispersion models used in real-time emergency response systems. J Radiol Prot 30(4):747–759.  https://doi.org/10.1088/0952-4746/30/4/008CrossRefGoogle Scholar
  3. Andronopoulos S, Davakis E, Bartzis JG, Kovalets IV (2010) RODOS meteorological pre-processor and atmospheric dispersion model DIPCOT: a model suite for radionuclides dispersion in complex terrain. Radioprotection 45(5):S77–S84.  https://doi.org/10.1051/radiopro/2010017CrossRefGoogle Scholar
  4. Andronopoulos S, Ievdin I, Kovalets I, Anulich S, Trybushnyi D (2016) New functionalities developed in the NERIS-TP project regarding meteorological data used by Decision Support Systems. Radioprotection 51(HS1):S13–S16.  https://doi.org/10.1051/radiopro/2016004CrossRefGoogle Scholar
  5. Bocquet M (2008) Inverse modelling of atmospheric tracers: non-Gaussian methods and second-order sensitivity analysis. Nonlinear Process Geophys 15:127–143.  https://doi.org/10.5194/npg-15-127-2008CrossRefGoogle Scholar
  6. Davakis E, Andronopoulos S, Kovalets I, Gounaris N, Bartzis JG, Nychas SG (2007) Data assimilation in meteorological preprocessors: effects on atmospheric dispersion simulations. Atmos Environ 41(14):2917–2932.  https://doi.org/10.1016/j.atmosenv.2006.12.031CrossRefGoogle Scholar
  7. Davoine X, Bocquet M (2007) Inverse modeling-based reconstruction of the Chernobyl source term available for long term transport. Atmos Chem Phys 7:1549–1564.  https://doi.org/10.5194/acp-7-1549-2007CrossRefGoogle Scholar
  8. De Haan P, Rotach MW (1998) A novel approach to atmospheric dispersion modelling: the puff-particle model. Q J R Meteorol Soc 124:2771–2792.  https://doi.org/10.1002/qj.49712455212CrossRefGoogle Scholar
  9. Gryning SE, Batchvarova E, Schneiter D et al (1998) Meteorological conditions at the release site during the two tracer experiments. Atmos Environ 32(24):4213–4137.  https://doi.org/10.1016/s1352-2310(98)00191-5CrossRefGoogle Scholar
  10. Hofman R, Seibert P, Kovalets I, Andronopoulos S (2015) Analytical source term optimization for radioactive releases with approximate knowledge of nuclide ratios. In: EGU general assembly 2015 conference abstracts, vol 17, EGU2015-3033Google Scholar
  11. Ievdin Y, Trybushny D, Zheleznyak M, Raskob W (2010) RODOS re-engineering: aims and implementation details. Radioprotection 45(5):S181–S190.  https://doi.org/10.1051/radiopro/2010024CrossRefGoogle Scholar
  12. Ievdin I, Trybushnyi D, Landman C (2015) JRODOS user guide, version 3.21. Karlsruhe Institute of TechnologyGoogle Scholar
  13. Kovalets I, Andronopoulos S, Bartzis J, Gounaris N, Kushchan A (2004) Introduction of data assimilation procedures in the meteorological pre-processor of atmospheric dispersion models used in emergency response systems. Atmos Environ 38(3):457–467.  https://doi.org/10.1016/j.atmosenv.2003.09.068CrossRefGoogle Scholar
  14. Kovalets I, Hofman R, Seibert P, Andronopoulos S (2014) Dispersion modelling and 1st-guess source term uncertainties. Report of the EU FP7 PREPARE project PREPARE(WP4)-(14)-05.  https://doi.org/10.13140/rg.2.2.16116.86403
  15. Kovalets I, Andronopoulos S, Hofman R, Seibert P, Ievdin I (2016) Advanced method for source term estimation and status of its integration in JRODOS. Radioprotection 51(HS2):S121–S124.  https://doi.org/10.1051/radiopro/2016046CrossRefGoogle Scholar
  16. Landman C (2007) Scenario data sets and scenarios for RODOS PV6 final. Report RODOS(RA7)-TN(04)-02. Germany Karlsruhe: Karlsruhe Institute of Technology. Available at: https://resy5.iket.kit.edu/RODOS/Documents/Public/Handbook/Volume2/3_3_scenariodata.pdf, last accessed 2018/06/01
  17. Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Inc., Englewood Cliffs, New JerseyzbMATHGoogle Scholar
  18. Raskob W, Schneider T, Gering F, Charron S, Zheleznyak M, Andronopoulos S, Heriard-Dubreuil G, Camps J (2016) Innovative integrative tools and platforms. Key results of the PREPARE European Project. Radioprotection 51(HS2), S59-S61. doi: https://doi.org/10.1051/radiopro/2016032CrossRefGoogle Scholar
  19. Saunier O, Mathieu A, Didier D, Tombette M, Quélo D, Winiarek V, Bocquet M (2013) An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations. Atmos Chem Phys 13:11403–11421.  https://doi.org/10.5194/acp-13-11403-2013CrossRefGoogle Scholar
  20. Seibert P, Frank A, Kromp-Kolb H (2002) Inverse modelling of atmospheric trace substances on the regional scale with Lagrangian models. In: Proceedings of the EUROTRAC-2 symposium. Garmisch-Partenkirchen, Germany, pp 11–15Google Scholar
  21. Seibert P, Kristiansen NI, Richter A, Eckhardt S, Prata AJ, Stohl A (2011) Uncertainties in the inverse modelling of sulphur dioxide eruption profiles. Geomat Nat Hazards Risk 2(3):201–216.  https://doi.org/10.1080/19475705.2011.590533CrossRefGoogle Scholar
  22. Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474.  https://doi.org/10.5194/acp-5-2461-2005CrossRefGoogle Scholar
  23. Stohl A, Seibert P, Wotawa G, Arnold D, Bukhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12:2313–2343.  https://doi.org/10.5194/acp-12-2313-2012CrossRefGoogle Scholar
  24. Talerko N (2005) Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modeling. J Environ Radioact 84(3):343–362.  https://doi.org/10.1016/j.jenvrad.2005.04.005CrossRefGoogle Scholar
  25. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM Publishers, USA, Philadelphia.  https://doi.org/10.1137/1.9780898717921
  26. Tsiouri V, Kovalets I, Andronopoulos S, Bartzis J (2011) Development and first tests of a data assimilation algorithm in a Lagrangian puff atmospheric dispersion model. Int J Environ Pollut 44(1–4):147–155.  https://doi.org/10.1504/IJEP.2011.038413CrossRefzbMATHGoogle Scholar
  27. Tsiouri V, Kovalets I, Andronopoulos S, Bartzis JG (2012) Source function estimation with data assimilation of gamma dose measurements in Lagrangian atmospheric dispersion model DIPCOT. Radiat Prot Dosimetry 148(1):34–44.  https://doi.org/10.1093/rpd/ncq592CrossRefzbMATHGoogle Scholar
  28. US NRC (1990) Analysis of CDF from internal events: expert judgment. US NRC Report NUREG/CR-4550, vol 2. Available online: https://www.nrc.gov/docs/ML0634/ML063460465.pdf, last accessed 2018/06/01
  29. Winiarek V, Vira J, Bocquet M, Sofiev M, Saunier O (2011) Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmos Environ 45(17):2944–2955.  https://doi.org/10.1016/j.atmosenv.2010.12.025CrossRefGoogle Scholar
  30. Wotawa G, DeGeer L-E, Denier P, Kalinowski M, Toivonen H, D’Amours R, Desiato F, Issartel J-P, Langer M, Seibert P et al (2003) Atmospheric transport modelling in support of CTBT verification overview and basic concepts. Atmos Environ 37(18):2529–2537.  https://doi.org/10.1016/S1352-2310(03)00154-7CrossRefGoogle Scholar
  31. Zhang X, Raskob W, Landman C, Trybushnyi D, Li Y (2017) Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management. J Hazard Mater 325(5):288–300.  https://doi.org/10.1016/j.jhazmat.2016.10.072CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ivan Kovalets
    • 1
    • 2
    Email author
  • Spyros Andronopoulos
    • 3
  • Radek Hofman
    • 4
  • Petra Seibert
    • 4
  • Ievgen Ievdin
    • 2
    • 5
  • Oleksandr Pylypenko
    • 1
    • 2
  1. 1.Institute of Mathematical Machines and Systems Problems NAS of UkraineKievUkraine
  2. 2.Ukrainian Center of Environmental and Water ProjectsKievUkraine
  3. 3.NCSR DemokritosInstitute of Nuclear and Radiological Sciences and Technology, Energy and SafetyAttikiGreece
  4. 4.University of ViennaViennaAustria
  5. 5.BfS—Federal Office for Radiation ProtectionOberschleissheimGermany

Personalised recommendations