Skip to main content

Nano-energetic Materials on a Chip

  • Chapter
  • First Online:
Book cover Nano-Energetic Materials

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

After integration into an electronic chip, the nano-energetic materials have found a very important role as portable microscale energy systems in many applications such as micro-actuation for micro-fluidics, micro-ignition, micro-propulsion, and onboard micro-power unit. However, there has been an ongoing challenge to fabricate high-reactive and high-energy density nano-energetic materials and integrate it with microelectromechanical system (MEMS) devices. There are various micro-/nanofabrication methodologies to develop and integrate the nano-energetic materials into a chip. This chapter discusses the different approaches and methods of realization of nano-energetic materials on a chip and details about the ignition sensitivity, energy density, and combustion performance. The chapter also particularizes the application of the chip-integrated nano-energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305

    Article  CAS  Google Scholar 

  • Bahrami M, Taton G, Condra V, Salvagnac L, Tenailleau C, Alphonse P, Rossi C (2014) Magnetron sputtered Al-CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate. Propellants, Explos Pyrotech 39:365–373

    Article  CAS  Google Scholar 

  • Barbee TW, Simpson RL, Gash AE, Satcher JH (2005) Nanolaminate-based ignitors. U.S. Patent WO 2005016850 A2, 24 Feb

    Google Scholar 

  • Chen Y, Zhang W, Yu C, Ni D, Ma K, Ye J (2018) Controllable synthesis of NiCo2O4/Al core-shell nanowires thermite film with excellent heat release and short ignition time. Mater Des 155:396–403

    Article  CAS  Google Scholar 

  • Di Biaso H, English BA, Allen MG (2004) Solid-phaseconductivefuels for chemical microactuators. Sens Act A, Phys 111(2/3):260–266

    Google Scholar 

  • Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  • Hinshaw JC (1995) Thermite compositions for use as gas generants. International Patent WO 95/04672

    Google Scholar 

  • Hofmann A, Laucht H, Kovalev D, Timoshenko VY, Diener J, Kunzner N, Gross E (2006) Explosive composition and its use. U.S. Patent 6 984 274, 10 Jan

    Google Scholar 

  • Hong CC, Murugesan S, Beaucage G, Choi JW, Ahn CH (2003) A functioning on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip. Lab Chip 3(4):281–286

    Article  CAS  Google Scholar 

  • Ke X, Zhou X, Gao H, Hao G, Xiao L, Chen T, Liu J, Jiang W (2018) Surface functionalized core/shell structured CuO/Al nanothermite with long-term storage stability and steady combustion performance. Mater Des 140:179–187

    Article  CAS  Google Scholar 

  • Kim KJ, Jung H, Kim JH, Jang NS, Kim JM, Kim SH (2017) Nanoenergetic material-on-multiwalled carbon nanotubes paper chip as compact and flexible igniter. Carbon 114:217–223

    Article  CAS  Google Scholar 

  • Laucht H, Bartuch H, Kovalev D (2004) Silicon initiator, from the idea to functional tests. In: Proceedings of 7th international symposium and exhibition Sophist car occupant safety systems, pp 12–16

    Google Scholar 

  • Lewis DH, Janson SW, Cohen RB, Antonsson EK (2000) Digital micropropulsion. Sens Act A, Phys 80(2):143–154

    Article  CAS  Google Scholar 

  • Li D, Lu XB, Zhou ZZ, Qiu MX, Lin CG (1988) Laser initiated aluminothermic reaction applied to preparing Mo–Si film on silicon substrates. Mater Res Soc Symp 101:487–490

    CAS  Google Scholar 

  • Lindsay W, Teasdale D, Milanovic V, Pister K, Pello CF (2001) Thrust and electrical power from solid propellant microrockets. In: 14th IEEE International Conference on MEMS, Piscataway, NJ, pp 606–610

    Google Scholar 

  • Meeks K, Pantoya ML, Apblett C (2014) Deposition and characterization of energetic thin films. Combust Flame 161:1117–1124

    Article  CAS  Google Scholar 

  • Molodtsova OV, Aristova IM, Babenkov SV, Vilkov OV, Aristov VY (2014) Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film. J Appl Phys 115:164310

    Article  Google Scholar 

  • Murray AK, Novotny WA, Fleck TJ, Emre GI, Son SF, Chiua GTC, Rhoads JF (2018) Selectively-deposited energetic materials: a feasibility study of the piezoelectric inkjet printing of nanothermites. Addit Manuf 22:69–74

    Article  CAS  Google Scholar 

  • Nicollet A, Salvagnac L, Baijot V, Estève A, Rossi C (2018) Fast circuit breaker based on integration of Al/CuO nanothermites. Sens Act A: Phys 273:249–255

    Article  CAS  Google Scholar 

  • Norton AA, Minor MA (2006) Pneumatic micro actuator powered by the deflagration of sodium azide. J Microelectromech Syst 15(2):344–354

    Article  CAS  Google Scholar 

  • Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5:14967–14973

    Article  CAS  Google Scholar 

  • Pennarun P, Rossi C, Estève D, Bourrier D (2006) Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions. J Micromech Microeng 16(1):92–100

    Article  Google Scholar 

  • Petrantoni M, Rossi C, Salvagnac L, Conédéra V, Estève A, Tenailleau C, Alphonse P, Chaba YJ (2010) Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. J Appl Phys 108:084323

    Article  Google Scholar 

  • Pham PQ, Briand D, Rossi C, De Rooij NF (2003) Downscaling of solid propellant pyrotechnical microsystems. In: 12th international conference on solid-state sensor and act (Transducers), Boston, MA, pp 1423–1426

    Google Scholar 

  • Pile àgrave (2005) combustible pour l’alimentation d’appareils électroniques, notamment portables. Patent FR2 818 808 (In French)

    Google Scholar 

  • Rossi C, Estève D (1997) Pyrotechnic micro actuators. In: Proceedings of 11th EUROSENSORS XI, vol. 2. Varsovie, Pologne, pp 771–774

    Google Scholar 

  • Rossi C, Estève D, Mingués C (1999) Pyrotechnic actuator: a new generation of Si integrated actuator. Sens Act A, Phys 74(1–3):211–215

    Article  CAS  Google Scholar 

  • Rossi C, Briand D, Dumonteuil M, Camps T, Pham PQ, de Rooij NF (2006) Matrix of 10 × 10 addressed solid propellant microthrusters: review of the technologies. Sens Act A, Phys 126(1):241–252

    Article  CAS  Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16:919–931

    Article  CAS  Google Scholar 

  • Shen J, Qiaoa Z, Wang J, Zhang K, Li R, Nie F, Yang G (2014) Pressure loss and compensation in the combustion process of Al–CuO nanoenergetics on a microheater chip. Combust. Flame 161(11):2975–2981

    Article  CAS  Google Scholar 

  • Staley CS, Morris CJ, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Gangopadhyay S (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermit. J Micromech Microeng 21:115015

    Article  Google Scholar 

  • Stewart DS (2004) Miniaturization of explosive technology and microdetonics. 21st ICTAM, Varsaw, Poland

    Google Scholar 

  • Sui H, LeSergent L, Wen JZ (2017) Diversity in addressing reaction mechanisms of nano-thermite composites with a layer by layer structure. Adv Eng Mater 20(3):1700822

    Article  Google Scholar 

  • Takahashi K, Ebisuzaki H, Kajiwara H, Achiwa T, Nagayama K (2000) “Design and testing of mega-bit microthruster arrays,” presented Nanotech, Houston, TX, Paper AIAA 2002-5758

    Google Scholar 

  • Tanaka S, Hosokawa R, Tokudome S, Hori K, Saito H, Watanabe M, Esashi M (2003) MEMS-based solid propellant rocket array thruster with electrical feedthroughs. Trans Jpn Soc Aeronaut Space Sci 46(151):47–51

    Article  CAS  Google Scholar 

  • Tappan AS, Long GT, Renlund AM, Kravitz SH (2003) Microenergetic materials-microscale energetic material processing and testing. In: 41st AIAA aerospace sciences meeting and exhibition, Reno, NV, AIAA-2003-0242

    Google Scholar 

  • Tappan AS, Long GT, Wroblewski B, Nogan J, Palmer HA, Kravitz SH, Renlund AM (2005) Patterning of regular porosity in PETN microenergetic material thin films. In: 36th international conference on ICT, Karlsruhe, Germany, pp 134–135

    Google Scholar 

  • Teasdale D, Milanovic V, Chang P, Pister K (2001) Microrockets for smart dust. Smart Mater Struct 10(6):1145–1155

    Article  CAS  Google Scholar 

  • Troianello T (2001) Precision foil resistors used as electro-pyrotechnic initiators. In: Proceedings of 1st electronic components technology conference, Orlando, FL, pp 1413–1417

    Google Scholar 

  • Vasylkiv O, Sakka Y (2005) Nanoexplosion synthesis of multimetal oxide ceramic nanopowders. Nano Lett 5(12):2598–2604

    Article  CAS  Google Scholar 

  • Vasylkiv O, Sakka Y, Skorokhod VV (2006) Nano-blast synthesis of nano-size CeO2-Gd2O3 powders. J Am Ceram Soc 89(6):1822–1826

    Article  CAS  Google Scholar 

  • Yang Y, Xu D, Zhang K (2012) Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials. J Mater Sci 47:1296–1305

    Article  CAS  Google Scholar 

  • Yin Y, Li X, Shu Y, Guo X, Zhu Y, Huang X, Bao H, Xu K (2017) Highly-reactive Al/CuO nanoenergetic materials with a tubular structure. Mater Des 117:104–110

    Article  CAS  Google Scholar 

  • Youngner DW, Lu ST, Choueiri E, Neidert JB, Black RE, Graham KJ, Fahey D, Lucus R, Zhu X (2000) MEMS mega-pixel micro-thruster arrays for small satellite stationkeeping. In: 14th annual AIAA/USU conference small satellites, Logan, UT, AIAA Paper SSC00-X-2

    Google Scholar 

  • Yu C, Zhang W, Hu B, Ni D, Zheng Z, Liu J, Ma K, Ren W (2018a) Core/shell CuO/Al nanorods thermite film based on electrochemical anodization. Nanotechnology 29(36)

    Article  Google Scholar 

  • Yu C, Zhang W, Yu G, J D, Z Ni, Ye C, Ma K (2018b) The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance. Chem Eng J 338:99–106

    Article  CAS  Google Scholar 

  • Zakiyyan N, Wang A, Thiruvengadathan R, Staley C, Mathai J, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) Combustion of aluminum nanoparticles and exfoliated 2D molybdenum trioxide composites. Combust Flame 187:1–10

    Article  CAS  Google Scholar 

  • Zhang KL, Chou SK, Ang SS, Tang XS (2005) A MEMS-based solid propellant microthruster with Au/Ti igniter. Sens Act A, Phys 122(1):113–123

    Article  CAS  Google Scholar 

  • Zhang W, Baoqing Y, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl Mater Interface 5:239–242

    Article  Google Scholar 

  • Zhao Y, English BA, Choi Y, Di Biaso H, Yuan G, Allen MG (2004) Polymeric microcombustors for solid-phase conductive fuels. In: Proceedings of 17th IEEE international conference on MEMS, Maastricht, The Netherlands, pp 498–501

    Google Scholar 

  • Zhou X, Shen R, Ye Y, Zhu P, Hu Y, Wu L (2011) Influence of Al/CuO reactive multilayer films additives on exploding foil initiator. J Appl Phys 110:094505

    Article  Google Scholar 

  • Zhou X, Xu D, Zhang Q, Lu J, Zhang K (2013) Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability. ACS Appl Mater Interface 5:7641–7646

    Article  CAS  Google Scholar 

  • Zhou X, Xu D, Yang G, Zhang Q, Shen J, Lu J, Zhang K (2014) Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays. ACS Appl Mater Interface 6(13):10497–10505

    Article  CAS  Google Scholar 

  • Zhu P, Shen R, Ye Y, Zhou X, Hu Y (2011) Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films. J Appl Phys 110:074513

    Article  Google Scholar 

  • Zhu P, Shen R, Ye Y, Fu S, Li D (2013) Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications. J Appl Phys 113:184505

    Article  Google Scholar 

  • Zhu P, Jiao J, Shen R, Ye Y, Fu S, Li D (2014) Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip. J Appl Phys 115:194502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katiyar, J.K., Patel, V.K. (2019). Nano-energetic Materials on a Chip. In: Bhattacharya, S., Agarwal, A., Rajagopalan, T., Patel, V. (eds) Nano-Energetic Materials. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3269-2_6

Download citation

Publish with us

Policies and ethics