Skip to main content

Nano-energetic Materials for Defense Application

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Energetic materials are the reactive materials containing fuels and oxidizers that can liberate chemical energy preserved in their molecular structure. Nano-energetic materials have found to be the potential sources for extremely high heat release rates, tailored burning rate, extraordinary combustion efficiency, and reduced sensitivity. These materials play a vital role in defense applications as a recent advancement in emerging areas such as manufacturing of explosives, solid and liquid propellants, rocket propelling, advanced gun propellant materials. Considering the immense scope of these functional materials, this chapter focuses to cover the fundamental aspect of energetic materials, description of contemporary reported literature on design and synthesis of nano-energetic materials and their significance for microscale applications in the defense sector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams C (2006) Inventor; Lockheed Martin Corp, assignee. Explosive/energetic fullerenes. United States patent US 7,025,840, 11 Apr 2006

    Google Scholar 

  • Albini A (1991) Heterocyclic N-oxides. CRC Press, Boca Raton

    Google Scholar 

  • Aumann CE, Skofronick GL, Martin JA (1995) Oxidation behavior of aluminum nanopowders. J Vac Sci Technol B: Microelectron Nanometer Struct Process Meas Phenomena 13(3):1178–1183

    Article  CAS  Google Scholar 

  • Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305

    Article  CAS  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608

    Article  CAS  Google Scholar 

  • Bartuch H, Clément D, Kovalev D, Laucht H (2004) Silicon initiator, from the idea to functional tests. In: 7th international symposium and exhibition on sophisticated car occupant safety systems, Karlsruhe

    Google Scholar 

  • Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP (2003) Deposition and characterization of a self-propagating CuO x/Al thermite reaction in a multilayer foil geometry. J Appl Phys 94(5):2915–2922

    Article  CAS  Google Scholar 

  • Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 98(6):064903

    Article  Google Scholar 

  • Bottaro JC, Penwell PE, Schmitt RJ (1997) 1, 1, 3, 3-Tetraoxo-1, 2, 3-triazapropene anion, a new oxyanion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc 119(40):9405–9410

    Article  CAS  Google Scholar 

  • Brown ME, Taylor SJ, Tribelhorn MJ (1998) Fuel—oxidant particle contact in binary pyrotechnic reactions. Propellants Explos Pyrotech 23(6):320–327

    Article  CAS  Google Scholar 

  • Chavez DE, Hiskey MA (1998) Synthesis of the bi-heterocyclic parent ring system 1,2,4-triazole [4,3-b][1,2,4,5] tetrazine and some 3, 6-disubstituted derivatives. J Heterocycl Chem 35(6):1329–1332

    Article  CAS  Google Scholar 

  • Chavez DE, Hiskey MA (1999) 1,2,4,5-tetrazine based energetic materials. J Energ Mater 17(4):357–377

    Article  CAS  Google Scholar 

  • Chavez D, Hill L, Hiskey M, Kinkead S (2000) Preparation and explosive properties of azo-and azoxy-furazans. J Energ Mater 18(2–3):219–236

    Article  CAS  Google Scholar 

  • Chung SW, Guliants EA, Bunker CE, Hammerstroem DW, Deng Y, Burgers MA, Jelliss PA, Buckner SW (2009) Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25(16):8883–8887

    Article  CAS  Google Scholar 

  • Coburn MD (1968) Picrylamino-substituted heterocycles. II. Furazans. J Heterocycl Chem 5(1):83–87

    Article  CAS  Google Scholar 

  • Coburn MD, Hiskey MA, Lee KY, Ott DG, Stinecipher MM (1993) Oxidations of 3,6-diamino-1,2,4,5-tetrazine and 3,6-bis (s,s-dimethylsulfilimino)-1,2,4,5-tetrazine. J Heterocycl Chem 30(6):1593–1595

    Article  CAS  Google Scholar 

  • Currano LJ, Churaman WA (2009) Energetic nanoporous silicon devices. J Microelectromech Syst 18(4):799–807

    Article  CAS  Google Scholar 

  • Delpuech A, Cheville J, Michaud C (1981) Molecular electronic structure and initiation of secondary explosives. In: Proceedings of the 7th symposium (international) on detonation Jun 16, pp 65–74

    Google Scholar 

  • Ding L, Xuebiao L, Zhengzhuo Z, Mingxin Q, Chenglu L (1987) Laser-initiated aluminothermic reaction applied to prepare the mo-si film on silicon substrates. In: MRS Online Proceedings Library Archive, p 101

    Google Scholar 

  • Dremin AN, Shvedov KK (1964) Estimation of Chapman-Jouget pressure and time of reaction in detonation waves of powerful explosives. J Appl Mech Tech Phys 2:154–159

    Google Scholar 

  • Durães L, Campos J, Portugal A (2006) Radial combustion propagation in iron (III) oxide/aluminum thermite mixtures. Propellants Explos Pyrotech 31(1):42–49

    Article  Google Scholar 

  • Eichhorn B, Zachariah MR, Aksay IA, Selloni A, Car R, Dabbs DM, Yetter RA, Son SF, Thynell S, Groven LJ (2012) Smart Functional Nano-energetic Materials. Purdue Univ Lafayette In

    Google Scholar 

  • Ferguson JD, Buechler KJ, Weimer AW, George SM (2005) SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials. Powder Technol 156(2–3):154–163

    Article  CAS  Google Scholar 

  • Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31(1):291–321

    Article  CAS  Google Scholar 

  • Gao C, Xu ZC, Deng SR, Wan J, Chen Y, Liu R, Huq E, Qu XP (2011) Silicon nanowires by combined nanoimprint and angle deposition for gas sensing applications. Microelectron Eng 88(8):2100–2104

    Article  CAS  Google Scholar 

  • Gash AE, Tillotson TM, Jr Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater 13(3):999–1007

    Article  CAS  Google Scholar 

  • Granier JJ, Pantoya ML (2004) Laser ignition of nanocomposite thermites. Combust Flame 138(4):373–383

    Article  CAS  Google Scholar 

  • Hollins RA, Merwin LH, Nissan RA, Wilson WS, Gilardi RD (1995) Aminonitroheterocyclic n-oxides–a new class of insensitive energetic materials. In: MRS online proceedings library archive, p 418

    Google Scholar 

  • Hollins RA, Merwin LH, Nissan RA, Wilson WS, Gilardi R (1996) Aminonitropyridines and their N-oxides. J Heterocycl Chem 33(3):895–904

    Article  CAS  Google Scholar 

  • Ismail B, Abaab M, Rezig B (2001) Structural and electrical properties of ZnO films prepared by screen printing technique. Thin Solid Films 383(1–2):92–94

    Article  CAS  Google Scholar 

  • Ivanov GV, Tepper F (1997) ‘Activated’ aluminum as a stored energy source for propellants. Int J Energ Mater Chem Propul 4(1–6)

    Google Scholar 

  • Kim SH, Zachariah MR (2004) Enhancing the rate of energy release from nano-energetic materials by the electrostatically enhanced assembly. Adv Mater 16(20):1821–1825

    Article  CAS  Google Scholar 

  • Klapötke TM (2017) Chemistry of high-energy materials. Walter de Gruyter GmbH & Co KG, Berlin, 21 Aug

    Google Scholar 

  • Kondo K, Tanaka S, Habu H, Tokudome SI, Hori K, Saito H, Itoh A, Watanabe M, Esashi M (2004) Vacuum test of a micro-solid propellant rocket array thruster. IEICE Electron Express 1(8):222–227

    Article  Google Scholar 

  • Kumar SG, Rao KK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 1(391):124–148

    Article  Google Scholar 

  • Laucht H, Bartuch H, Kovalev D (2004) Silicon initiator, from the idea to functional tests. In: Proceedings of 7th international symposium and exhibit. Sophisticated Car Occupant Safety System, pp 12–16

    Google Scholar 

  • Lee KY, Storm CB, Hiskey MA, Coburn MD (1991) An improved synthesis of 5-amino-3-nitro-1 H-1, 2, 4-triazole (ANTA), a useful intermediate for the preparation of insensitive high explosives. J Energ Mater 9(5):415–428

    Article  CAS  Google Scholar 

  • Li XJ, Xie XH, Li RY (2005) Detonation synthesis for nano-metallic oxide powders. Explos Shock Waves 25(3):271

    Google Scholar 

  • Li Y, Cott DJ, Mertens S, Peys N, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2011) Integration and electrical characterization of carbon nanotube via interconnects. Microelectron Eng 88(5):837–843

    Article  Google Scholar 

  • Martin AN, Pinkerton AA, Gilardi RD, Bottaro JC (1997) Energetic materials: the preparation and structural characterization of three biguanidiniumdinitramides. Acta Crystallogr B Struct Sci 53(3):504–512

    Article  Google Scholar 

  • Martirosyan KS, Ramazanova Z, Zyskin M (2013) Nanoscale energetic materials: theoretical and experimental updates. In: Proceedings of the 8th Pacific Rim international congress on advanced materials and processing, Springer, Cham, pp 57–63

    Chapter  Google Scholar 

  • Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing. William Andrew, 29 Apr 2010

    Google Scholar 

  • McCord P, Yau SL, Bard AJ (1992) Chemiluminescence of anodized and etched silicon: evidence for a luminescent siloxene-like layer on porous silicon. Science 257(5066):68–69

    Article  CAS  Google Scholar 

  • Mench MM, Yeh CL, Kuo KK (1998) Propellant burning rate enhancement and thermal behavior of ultra-fine aluminum powders (Alex). In: Energetic materials—production, processing, and characterization, pp 30–31

    Google Scholar 

  • Millar DI (2011) Energetic materials at extreme conditions. Springer Science & Business Media, 24 Sep

    Google Scholar 

  • Miziolek A (2002) Nanoenergetics: an emerging technology area of national importance. Amptiac Q 6(1):43–48

    CAS  Google Scholar 

  • Mukae K, Tsuda K, Nagasawa I (1977) Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics. Jpn J Appl Phys 16(8):1361

    Article  CAS  Google Scholar 

  • Ou Y, Chen B, Li J, Dong S, Jia H (1994) Synthesis of nitro derivatives of triazoles. Chem Inform 25(44)

    Google Scholar 

  • Pagoria PF, Mitchell AR, Schmidt RD (1998) Synthesis, scale-up and experimental testing of LLM-105. In: Insensitive munitions and energetic materials technology symposium. San Diego, CA

    Google Scholar 

  • Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384(1–2):187–204

    Article  CAS  Google Scholar 

  • Pennarun P, Rossi C, Estève D, Bourrier D (2005) Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions. J Micromech Microeng 16(1):92

    Article  Google Scholar 

  • Pevzner MS, Kulibabina TN, Povarova NA, Kilina LV (1979) Heterocyclic nitrocompounds. 24. Nitration of 5-amino-1, 2, 4-triazole and 5-acetamino-1, 2, 4-triazole by acetylnitrate and nitronium salts. Khimiya Geterotsiklicheskikh Soedinenii 1(8):1132–1135

    Google Scholar 

  • Pierson HO (1999) Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1 Sept 1999

    Google Scholar 

  • Prakash A, McCormick AV, Zachariah MR (2005) Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv Mater 17(7):900–903

    Article  CAS  Google Scholar 

  • Proud WG (2014) Ignition and detonation in energetic materials: An introduction. STO-EN-AVT-214, 3

    Google Scholar 

  • Ramsden JJ (2012) Nanotechnology for military applications. Collegium 30:99

    Google Scholar 

  • Ritter H, Licht HH (1995) Synthesis and reactions of dinitrate amino and diaminopyridines. J Heterocycl Chem 32(2):585–590

    Article  CAS  Google Scholar 

  • Rossi C, Esteve D (1997) Pyrotechnic microactuators. In: Proceedings of 11th EUROSENSORS XI, vol 2, pp 771–774, 21 Sep 1997

    Google Scholar 

  • Rossi C, Estève D (2005) Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sens Actuators A 120(2):297–310

    Article  CAS  Google Scholar 

  • Rossi C, Esteve D, Mingues C (1999) Pyrotechnic actuator: a new generation of Si integrated actuator. Sens Actuators A 74(1–3):211–215

    Article  CAS  Google Scholar 

  • Rossi C, Briand D, Dumonteuil M, Camps T, Pham PQ, De Rooij NF (2006) The matrix of 10 × 10 addressed solid propellant micro thrusters: review of the technologies. Sens Actuators A 126(1):241–252

    Article  CAS  Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nano-energetic materials for MEMS: a review. J Microelectromech Syst 16(4):919–931

    Article  CAS  Google Scholar 

  • Rugunanan RA, Brown ME (1993) Combustion of binary and ternary silicon/oxidant pyrotechnic systems, part i: Binary systems with fe203 and sn02 as oxidants. Combust Sci Technol 95(1–6):61–83

    Article  Google Scholar 

  • Sanders VE, Asay BW, Foley TJ, Tappan BC, Pacheco AN, Son SF (2007) Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3). J Propul Pow 23(4):707–714

    Article  CAS  Google Scholar 

  • Sathiyanathan K, Lee R, Chesser H, Dubois C, Stowe R, Farinaccio R, Ringuette S (2011) Solid propellant microthruster design for nanosatellite applications. J Propul Power 27(6):1288–1294

    Article  CAS  Google Scholar 

  • Schönhuber G, Enzmann E, Nuiding H (2011) US Patent 8,083,259. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Sheremetev AB, Kharitonova OV, Mantseva EV, Kulagina VO, Shatunova EV, Aleksandrova NS, Melnikova TM, Ivanova EA, Dmitriev DE, Eman V, Yudin IL (1999) Nucleophilic substitution in a furazane series. Reaction with O-nucleophiles. Zhurnal Organicheskoi Khimii 35(10):1555–1566

    Google Scholar 

  • Simonenko VN, Zarko VE (1999) Comparative studying the combustion behavior of composite propellants containing ultrafine aluminum. In: Energetic materials—modelling of phenomena, experimental characterization, environmental engineering, pp 21–31

    Google Scholar 

  • Simpson RL, Pagoria PF, Mitchell AR, Coon CL (1994) Synthesis, properties, and performance of the high explosive ANTA. Propellants Explos Pyrotech 19(4):174–179

    Article  CAS  Google Scholar 

  • Singh RP, Verma RD, Meshri DT, Shreeve JN (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601

    Article  CAS  Google Scholar 

  • Solodyuk GD, Boldyrev MD, Gidaspov BV, Nikolaev VD (1981) Oxidation of 3, 4 diaminofurazan by some peroxide reagents. Chem Inform 12(36)

    Google Scholar 

  • Son SF, Asay BW (2001) Reaction propagation physics of A1/Mo03 nanocomposite thermites. Los Alamos National Laboratory (LANL), Los Alamos, NM

    Google Scholar 

  • Son SF, Yetter R, Yang V (2007) Introduction: nanoscale composite energetic materials. J Propul Power 23(4):643–644

    Article  Google Scholar 

  • Stewart DS (2005) Miniaturization of explosive technology and microdetonics. In: Mechanics of the 21st Century. Springer, Dordrecht, pp 379–385

    Google Scholar 

  • Suceska M (2012) Test methods for explosives. Springer Science & Business Media, 6 Dec

    Google Scholar 

  • Tägtström P, Maårtensson P, Jansson U, Carlsson JO (1999) Atomic layer epitaxy of tungsten oxide films using oxyfluorides as metal precursors. J Electrochem Soc 146(8):3139–3143

    Article  Google Scholar 

  • Tanaka S, Hosokawa R, Tokudome SI, Hori K, Saito H, Watanabe M, Esashi M (2003) MEMS-based solid propellant rocket array thruster. Trans Jpn Soc Aeronaut Space Sci 46(151):47–51

    Article  CAS  Google Scholar 

  • Tichapondwa SM, Focke WW, Del Fabbro O, Muller E (2012) Suppressing hydrogen evolution by aqueous silicon power dispersions. Ph.D. dissertation, University of Pretoria

    Google Scholar 

  • Tillotson TM, Hrubesh LW, Simpson RL, Lee RS, Swansiger RW, Simpson LR (1998) Sol-gel processing of energetic materials. J Non-Cryst Solids 1(225):358–363

    Article  Google Scholar 

  • Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, SatcherJr JH, Poco JF (2001) Nanostructured energetic materials using sol-gel methodologies. J Non-Cryst Solids 285(1–3):338–345

    Article  CAS  Google Scholar 

  • Troianello T (2001) Precision foil resistors used as electro-pyrotechnic initiators. In: Proceedings of 51st electronic components and technology conference, IEEE, pp 1413–1417

    Google Scholar 

  • Vasylkiv O, Sakka Y, Skorokhod VV (2006) Nano-blast synthesis of nano-size CeO2–Gd2O3 Powders. J Am Ceram Soc 89(6):1822–1826

    Article  CAS  Google Scholar 

  • Walley SM, Field JE, Greenaway MW (2006) Crystal sensitivities of energetic materials. Mater Sci Technol 22(4):402–413

    Article  CAS  Google Scholar 

  • Wang L, Munir ZA, Maximov YM (1993) Thermite reactions: their utilization in the synthesis and processing of materials. J Mater Sci 28(14):3693–3708

    Article  CAS  Google Scholar 

  • Wartenberg C, Charrue P, Laval F (1995) Conception, synthèse et caractérisation d’un nouvel explosif insensible et énergétique: Le DANTNP. Propellants Explos Pyrotech 20(1):23–26

    Article  CAS  Google Scholar 

  • Yarrington CD, Son SF, Foley TJ (2010) Combustion of silicon/Teflon/Viton and aluminum/Teflon/Viton energetic composites. J Propul Power 26(4):734–743

    Article  CAS  Google Scholar 

  • Youngner D, Thai Lu S, Choueiri E, Neidert J, Black III R, Graham K, Fahey D, Lucus R, Zhu X (2000) MEMS mega-pixel micro-thruster arrays for small satellite stationkeeping

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, S., Gupta, A. (2019). Nano-energetic Materials for Defense Application. In: Bhattacharya, S., Agarwal, A., Rajagopalan, T., Patel, V. (eds) Nano-Energetic Materials. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3269-2_4

Download citation

Publish with us

Policies and ethics