Skip to main content

Nanostructured Energetic Composites: An Emerging Paradigm

  • Chapter
  • First Online:
Nano-Energetic Materials

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Nanotechnology has ushered a remarkable progress in the field of medicine, environment, ceramics, especially considering its applications in the defence sector. This progress has been inspired by the ordered assembly of molecular and nanoscale elements to develop multifunctional smart reactive materials for energetic applications. An important class of these materials is the nano-energetic materials or nanothermites, which are composed of nanometals and nano-oxidizers. A major drawback of classical micron-sized metal particles is that they ignite after a comparatively long delay. These micron-sized metal particles when combined with oxidizer such as metal oxides as in thermite result in metal delays which are usually associated with diffusion of oxidizer and/or fuel through the protective layer of metal oxides. The motive behind nano-energetic materials is to develop a new synthetic procedure, which could limit both the oxidizer and the fuel balance in the thermites. Development of assembly of energetic composite materials (by number of techniques like self-assembly, cold spraying, ball milling, sol–gel, gas-phase processes) is touching new horizons of research. In this chapter, emphasis is laid on the current research focusing on manipulation of individual atoms and molecules to produce organized and systematic structure of nanocomposites for applications in nanothermites. Nanothermites are comparatively a new class of energetic material that consist of metallic fuel and metal oxide-based oxidizer with critical dimensions on the nanoscale. The standard powder-mixing protocol has intrinsic constraints, particularly random distribution of fuel and oxidizer particles and unavoidable fuel pre-oxidation. The present research scenario deals with an alternative approach for nanostructured energetic composites by varied processes. The subsequent sections of this chapter will meticulously describe the strategies adopted for the preparation of such nanostructure assemblies. These hierarchical structures provide desirable performance in combustion, ignition and mechanical characteristics. In the end, some promising applications of nanostructured energetic composites incorporated into various systems ranging from microelectromechanical systems (MEMS) devices to rocket propellants to explosives that permit new functions to be performed are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JY, Kim WD, Cho K, Lee D, Kim SH (2011a) Effect of metal oxide nanostructures on the explosive property of metastable intermolecular composite particles. Powder Tech 211:65–71

    Article  CAS  Google Scholar 

  • Ahn JY, Kim WD, Kim JH, Kim JH, Lee JK, Kim JM, Kim SH (2011b) Gas-phase synthesis of bimetallic oxide nanoparticles with designed elemental compositions for controlling the explosive reactivity of nanoenergetic materials. J Nanomater 42

    Google Scholar 

  • Apperson SJ, Bezmelnitsyn AV, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid-fuel microthruster applications. J Propul Power 25:1086–1091

    Article  CAS  Google Scholar 

  • Aumann CE, Murray AS, Skofronick GL, Martin JA (1994) Metastable interstitial composites: super thermite powders. In Proceedings insensitive munitions technology symposium, Williamsburg, VA, USA, pp 6–9

    Google Scholar 

  • Baláž P, Takacs L, Boldižárová E, Godočı́ková E (2003) Mechanochemical transformations and reactivity in copper sulphides. J Phys Chem Solids 64:1413–1417

    Article  CAS  Google Scholar 

  • Bernstein ER (2014) On the release of stored energy from energetic materials. In: Advances in quantum chemistry, vol 69. Academic Press, pp 31-69

    Google Scholar 

  • Bhattacharya S, Gao Y, Apperson S, Subramaniam S, Talantsev E, Shende RV, Gangopadhyay S (2006) A novel on-chip diagnosis method to detect flame velocity of nanoscale thermites. J Energ Mater 24:1–5

    Article  CAS  Google Scholar 

  • Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP (2003a) Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J Appl Phy 94:2915–2922

    Article  CAS  Google Scholar 

  • Blobaum KJ, Wagner AJ, Plitzko JM, Heerden DV, Fairbrother DH, Weihs TP (2003b) Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils. J Appl Phy 94:2923–2929

    Article  CAS  Google Scholar 

  • Bockmon BS, Pantoya ML, Son SF, Asay BW, Mang JT (2005) Combustion velocities and propagation mechanisms of metastable interstitial composites. J Appl Phys 98:64903

    Article  CAS  Google Scholar 

  • Bohlouli Zanjani G (2013) Synthesis, characterization, and application of nanothermites for joining. Master’s thesis, University of Waterloo

    Google Scholar 

  • Bohlouli-Zanjani G, Wen JZ, Hu A, Persic J, Ringuette S, Zhou YN (2013) Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder. Thermochim Acta 572:51–58

    Article  CAS  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press. San Diego, p 2

    Google Scholar 

  • Chen HY, Sachtler WMH (1998) Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor. Catal Today 42:73–83

    Article  CAS  Google Scholar 

  • Cheng JL, Hng HH, Lee YW, Du SW, Thadhani NN (2010) Kinetic study of thermal-and impact-initiated reactions in Al–Fe2O3 nanothermite. Combust Flame 157:2241–2249

    Article  CAS  Google Scholar 

  • Chiang YC, Wu MH (2017) Assembly and reaction characterization of a novel thermite consisting aluminum nanoparticles and CuO nanowires. Proc Combust Inst 36:4201–4208

    Article  CAS  Google Scholar 

  • Chung SW, Guliants EA, Bunker CE, Hammerstroem DW, Deng Y, Burgers MA, Jelliss PA, Buckner SW (2009) Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides. Langmuir 25:8883–8887

    Article  CAS  Google Scholar 

  • Clapsaddle BJ, Gash AE, Satcher JH, Simpson RL (2003) Silicon oxide in an iron (III) oxide matrix: the sol–gel synthesis and characterization of Fe–Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331:190–201

    Article  CAS  Google Scholar 

  • Clapsaddle BJ, Zhao L, Prentice D, Pantoya ML, Gash AE, Satcher Jr JH, Shea KJ, Simpson RL (2005) Formulation and performance of novel energetic nanocomposites and gas generators prepared by sol–gel methods. In: Proceedings of 36th international annual conference of ICT, Karlsruhe, Germany, p 39

    Google Scholar 

  • Clarkson J, Smith WE, Batchelder DN, Smith DA, Coats AM (2003) A theoretical study of the structure and vibrations of 2, 4, 6-trinitrotolune. J MolStruct 648:203–214

    Article  CAS  Google Scholar 

  • Comet M, Martin C, Klaumünzer M, Schnell F, Spitzer D (2015) Energetic nanocomposites for detonation initiation in high explosives without primary explosives. Appl Phys Lett 107:113–119

    Article  CAS  Google Scholar 

  • Crouse CA, Pierce CJ, Spowart JE (2010) Influencing solvent miscibility and aqueous stability of aluminium nanoparticles through surface functionalization with acrylic monomers. ACS Appl Mater Interfaces 2:2560–2569

    Article  CAS  Google Scholar 

  • Cui Y, Huang D, Li Y, Huang W, Liang Z, Xu Z, Zhao S (2015) Aluminium nanoparticles synthesized by a novel wet chemical method and used to enhance the performance of polymer solar cells by the plasmonic effect. J Mater Chem C 3:4099–4103

    Article  CAS  Google Scholar 

  • Dai J, Xu J, Wang F, Tai Y, Shen Y, Shen R, Ye Y (2018) Facile formation of nitrocellulose-coated Al/Bi2O3 nanothermites with excellent energy output and improved electrostatic discharge safety. Mater Des 143:93–103

    Article  CAS  Google Scholar 

  • Danen WC, Martin JA (1993) Energetic composites. U.S. Patent 5,266,132, issued Nov 30

    Google Scholar 

  • Deng S, Jiang Y, Huang S, Shi X, Zhao J, Zheng X (2018) Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches. Combus Flame

    Google Scholar 

  • Diamandis EP, Christopoulos TK (1991) The biotin-(strept) avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

    CAS  Google Scholar 

  • Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167

    Article  CAS  Google Scholar 

  • Durães L, Costa BF, Santos R, Correia A, Campos J, Portugal A (2007) Fe2O3/aluminum thermite reaction intermediate and final products characterization. Mater Sci Eng A 465:199–210

    Article  CAS  Google Scholar 

  • Dutro GM, Yetter RA, Risha GA, Son SF (2009) The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3 thermite. Proc Combust Inst 32(II): 1921–1928

    Article  CAS  Google Scholar 

  • Eckert J, Holzer JC, Ahn CC, Fu Z, Johnson WL (1993) Melting behavior of nanocrystalline aluminum powders. Nanostruct Mater 2:407–413

    Article  CAS  Google Scholar 

  • Ermoline A, Schoenitz M, Dreizin EL (2011) Reactions leading to ignition in fully dense nanocomposite Al-oxide systems. Combust Flame 158:1076–1083

    Article  CAS  Google Scholar 

  • Ermoline A, Stamatis D, Dreizin EL (2012) Low-temperature exothermic reactions in fully dense Al–CuO nanocomposite powders. Thermochim Acta 527:52–58

    Article  CAS  Google Scholar 

  • Foley TJ, Johnson CE, Higa KT (2005) Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem Mater 17:4086–4091

    Article  CAS  Google Scholar 

  • Folkers JP, Gorman CB, Laibinis PE, Buchholz S, Whitesides GM, Nuzzo RG (1995) Self-assembled monolayers of long-chain hydroxamic acids on the native oxide of metals. Langmuir 11:813–824

    Article  CAS  Google Scholar 

  • Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001a) Use of epoxides in the sol-gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater 13:999–1007

    Article  CAS  Google Scholar 

  • Gash AE, Tillotson TM, Satcher Jr JH, Hrubesh LW, Simpson RL (2001b) New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285:22–28

    Article  CAS  Google Scholar 

  • Gash AE, Satcher Jr JH, Simpson RL (2004) Behaviour of sol Gel derived nanostructured iron (III) oxide. In: Proceedings of 31st international pyrotechnic seminar, Fort Collins, Colorado, USA

    Google Scholar 

  • Ghanta SR, Muralidharan K (2010) Solution phase chemical synthesis of nano aluminium particles stabilized in poly (vinylpyrrolidone) and poly (methylmethacrylate) matrices. Nanoscale 2:976–980

    Article  CAS  Google Scholar 

  • Granier JJ, Pantoya ML (2004) Laser ignition of nanocomposite thermites. Combust Flame 138:373–383

    Article  CAS  Google Scholar 

  • Haber JA, Buhro WE (1998) Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J Am Chem Soc 120:10847–10855

    Article  CAS  Google Scholar 

  • Hammons JA, Wang W, Ilavsky J, Pantoya ML, Weeks BL, Vaughn MW (2008) Small angle X-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites. Phys Chem Chem Phys 10:193–199

    Article  CAS  Google Scholar 

  • He S, Chen J, Yang G, Qiao Z, Li J (2015) Controlled synthesis and application of nano-energetic materials based on the copper oxide/Al system. Cent Eur J Energ Mater 12:129–144

    CAS  Google Scholar 

  • Hobosyan M, Kazansky A, Martirosyan KS (2012) Nanoenergetic composite based on I2O5/Al for biological agent defeat. In: Technical proceeding of the 2012 NSTI nanotechnology conference and expo, pp 599–602

    Google Scholar 

  • Hübner J, Klaumünzer M, Comet M, Martin C, Vidal L, Schäfer M, Kryschi C, Spitzer D (2017) Insights into combustion mechanisms of variable aluminum-based iron oxide/-hydroxide nanothermites. Combust Flame 184:186–194

    Article  CAS  Google Scholar 

  • Ivanov GV, Tepper F (1997) Activated aluminum as a stored energy source for propellants. Int J Energetic Mater Chem Propul 4:1–6

    Google Scholar 

  • Ivanov YF, Osmonoliev MN, Sedoi VS, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Korotkikh AG, Kuznetsov VT (2003) Productions of ultra‐fine powders and their use in high energetic compositions. Propell Explos Pyrot 28:319–333

    Article  CAS  Google Scholar 

  • Jason JR, Waren AD, Rosenberg DM, Bellitto UJ (2003) Surface passivation of base Al nanoparticles using perfluroalkyl carboxylic acids. In: Proceeding of materials research society symposium, vol 800, pp 67–78

    Google Scholar 

  • Jian G, Liu L, Zachariah MR (2013) Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators. Adv Funct Mater 23:1341–1346

    Article  CAS  Google Scholar 

  • Kim SH, Zachariah MR (2004) Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv Mater 16:1821–1825

    Article  CAS  Google Scholar 

  • Kim DK, Bae JH, Kang MK, Kim HJ (2011) Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al. Curr App Phy 11:1067–1070

    Article  Google Scholar 

  • Kim JH, Kim SB, Choi MG, Kim DH, Kim KT, Lee HM, Lee HW, Kim JM, Kim SH (2015) Flash-ignitable nanoenergetic materials with tunable underwater explosion reactivity: the role of sea urchin-like carbon nanotubes. Combus Flame 162:1448–1454

    Article  CAS  Google Scholar 

  • Kim WD, Lee S, Lee DC (2018) Nanothermite of Al nanoparticles and three-dimensionally ordered macroporous CuO: mechanistic insight into oxidation during thermite reaction. Combus Flame 189:87–91

    Article  CAS  Google Scholar 

  • Korampally M, Apperson SJ, Staley CS, Castorena JA, Thiruvengadathan R, Gangopadhyay K, Mohan RR, Ghosh A, Polo-Parada L, Gangopadhyay S (2012) Transient pressure mediated intranuclear delivery of FITC-Dextran into chicken cardiomyocytes by MEMS-based nanothermite reaction actuator. Sens Actuators B Chem 171:1292–1296

    Article  CAS  Google Scholar 

  • Kwon YS, Gromov AA, Ilyin AP, Popenko EM, Rim GH (2003) The mechanism of combustion of superfine aluminum powders. Combust Flame133:385–391

    Article  CAS  Google Scholar 

  • Lee Perry W, Tappan BC, Reardon BL, Sanders VE, Son SF (2007) Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite. J App Phy 101:064313

    Article  CAS  Google Scholar 

  • Mabuchi T, Nishikiori H, Tanaka N, Fujii T (2005) Relationships between Fluorescence properties of benzoquinolines and physicochemical changes in the Sol–Gel–xerogel transitions of silicon alkoxide systems. J Sol-Gel Sci Technol 33:333–340

    Article  CAS  Google Scholar 

  • Mahendiran C, Ganesan R, Gedanken A (2009) Sonoelectrochemical synthesis of metallic aluminium nanoparticles. Eur J Inorg Chem 14:2050–2053

    Article  CAS  Google Scholar 

  • Malchi JY, Yetter RA, Foley TJ, Son SF (2008) The effect of added Al2O3 on the propagation behavior of an Al/CuO nanoscale thermite. Combust Sci Technol 180:1278–1294

    Article  CAS  Google Scholar 

  • Malchi JY, Foley TJ, Yetter RA (2009) Electrostatically self-assembled nanocomposite reactive microspheres. ACS Appl Mater Interfaces 1:2420–2423

    Article  CAS  Google Scholar 

  • Mandin P, Wüthrich R, Roustan H (2009) Industrial Aluminium Production: the Hall-Heroult process modelling. ECS Trans 19:1–10

    CAS  Google Scholar 

  • Marín L, Nanayakkara CE, Veyan JF, Warot-Fonrose B, Joulie S, Estève A, Tenailleau C, Chabal YJ, Rossi C (2015) Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces. ACS Appl Mater Interfaces 7:11713–11718

    Article  CAS  Google Scholar 

  • Martirosyan KS, Wang L, Vicent A, Luss D (2009) Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use. Nanotechnol 20:405609

    Article  CAS  Google Scholar 

  • McClain MJ, Schlather AE, Ringe E, King NS, Liu L, Manjavacas A, Knight MW et al (2015) Aluminium nanocrystals. Nano Lett 15:2751–2755

    Article  CAS  Google Scholar 

  • Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S (2006) Nanoenergetic composite of mesoporous iron oxide and aluminum nanoparticles. J Energ Mater 24:341–360

    Article  CAS  Google Scholar 

  • Moore K, Pantoya ML (2006) Combustion of environmentally altered molybdenum trioxide nanocomposites. Propell Explos Pyrot 31:182–187

    Article  CAS  Google Scholar 

  • Moore DS, Son SF, Asay BW (2004) Time-resolved spectral emission of deflagrating nano-Al and nano-MoO3 metastable interstitial composites. Propell Explos Pyrot 29:106–111

    Article  CAS  Google Scholar 

  • Moore K, Pantoya ML, Son SF (2007) Combustion behaviors resulting from bimodal aluminium size distributions in thermites. J Propul Power 23:181–185

    Article  CAS  Google Scholar 

  • Ohkura Y, Liu SY, Rao PM, Zheng X (2011) Synthesis and ignition of energetic CuO/Al core/shell nanowires. Proc Combust Inst 3:1909–1915

    Article  CAS  Google Scholar 

  • Pantoya ML, Granier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propell Explos Pyrotech 30:53–62

    Article  CAS  Google Scholar 

  • Park K, Lee D, Rai A, Mukherjee D, Zachariah MR (2005) Size-resolved kinetic measurements of aluminium nanoparticle oxidation with single particle mass spectrometry. J Phys Chem B 109:7290–7299

    Article  CAS  Google Scholar 

  • Perry WL, Smith BL, Bulian CJ, Busse JR, Macomber CS, Dye RC, Son SF (2004) Nano-scale tungsten oxides for metastable intermolecular composites. Propell Explos Pyrot 29:99–105

    Article  CAS  Google Scholar 

  • Petrantoni M, Rossi C, Salvagnac L, Conédéra V, Estève A, Tenailleau C, Alphonse P, Chabal YJ (2010a) Multilayered Al/CuO thermite formation by reactive magnetron sputtering: nano versus micro. J Appl Phy 108:084323

    Article  CAS  Google Scholar 

  • Petrantoni M, Bahrami M, Salvagnac L, Conédéra V, Rossi C, Alphonse P, Tenailleau C (2010b) Nanoenergetics on a chip: technology and application for micro ignition in safe arm and fire systems. In: Proceedings of power MEMS, vol 39

    Google Scholar 

  • Picard YN, Joel PMD, Friedmann TA, Steven MY, David PA (2008) Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates. Appl Phys Lett 93:104104

    Article  CAS  Google Scholar 

  • Pichot V, Comet M, Miesch J, Spitzer D (2015) Nanodiamond for tuning the properties of energetic composites. J Hazard Mater 300:194–201

    Article  CAS  Google Scholar 

  • Pierre AC (2013) Introduction to sol-gel processing, vol 1. Springer Science & Business Media

    Google Scholar 

  • Plantier B, Pantoya ML, Gash AE (2005) Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique. Combust Flame 140:299–309

    Article  CAS  Google Scholar 

  • Prakash A, McCormick AV, Zachariah MR (2004) Aero-sol-gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem Mater 16:1466–1471

    Article  CAS  Google Scholar 

  • Prakash A, McCormick AV, Zachariah MR (2005) Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. Nano Lett 5:1357–1360

    Article  CAS  Google Scholar 

  • Prentice D, Pantoya ML, Gash AE (2006) Combustion wave speeds of sol-gel-synthesized tungsten trioxide and nano-aluminum: the effect of impurities on flame propagation. Energ Fuels 20:2370–2376

    Article  CAS  Google Scholar 

  • Puszynski JA (2004) Recent advances and initiatives in the field of nanotechnology. In: Proceedings of 31st international pyrotechnic seminar, Fort Collins, Colorado, USA, pp 233–240

    Google Scholar 

  • Puszynski JA, Bulian CJ, Swiatkiewicz JJ (2007) Processing and ignition characteristics of aluminium-bismuth trioxide nanothermite system. J Propul Power 23:698–706

    Article  CAS  Google Scholar 

  • Qin L, Gong T, Hao H, Wang K, Feng H (2013) Core–shell-structured nanothermites synthesized by atomic layer deposition. J Nanopart Res 15:1–15

    Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. IEEE/ASME J Microelectromech Syst 16:919–931

    Article  CAS  Google Scholar 

  • Sarathi R, Sindhu TK, Chakravarthy SR (2007) Generation of nanoaluminium powder through wire explosion process and its characterization. Mater Charact 58:148–155

    Article  CAS  Google Scholar 

  • Shen J, Qiao Z, Wang J, Zhang K, Li R, Nie F, Yang G (2014) Pressure loss and compensation in the combustion process of Al–CuO nanoenergetics on a microheater chip. Combust Flame 161:2975–2981

    Article  CAS  Google Scholar 

  • Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S (2008) Nanoenergetic composites of CuO nanorods, nanowires, and al-nanoparticles. Propell Explos Pyrot 33:122–130

    Article  CAS  Google Scholar 

  • Shin MS, Kim JK, Kim W, Moraes CAM, Kim HS, Koo KK (2012) Reaction characteristics of Al/Fe2O3 nanocomposites. J IndEngChem18:1768–1773

    Google Scholar 

  • Son SF, Busse JR, Asay BW, Peterson PD, Mang JT, Bockmon B, Pantoya M (2002) Propagation studies of metastable intermolecular composites (MIC). No. LA-UR-02–2954. Los Alamos National Laboratory

    Google Scholar 

  • Son SF, Asay BW, Foley TJ, Yetter RA, Wu MH, Rish GA (2007) Combustion of nanoscale Al/MoO3 thermite in microchannels. J Propul Power 23:715–721

    Article  CAS  Google Scholar 

  • Srivastava DN, Perkas N, Gedanken A, Felner I (2002) Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B 106:1878–1883

    Article  CAS  Google Scholar 

  • Staley CS, Morris CJ, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Gangopadhyay S (2011) Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermite. J Micromech Microeng 21:115015

    Article  CAS  Google Scholar 

  • Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2013) Fast-impulse nanothermite solid-propellant miniaturized thrusters. J Propul Power 29:1400–1409

    Article  CAS  Google Scholar 

  • Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2014) Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturized nanothermite thrusters. Propell Explos Pyrot 39:374–382

    Article  CAS  Google Scholar 

  • Sullivan KT, Piekiel NW, Chowdhury S et al (2010) Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system. Combust Sci Technol 183:285–302

    Article  CAS  Google Scholar 

  • Sun J, Simon SL (2007) The melting behavior of aluminum nanoparticles. Thermochim Acta 463:32–40

    Article  CAS  Google Scholar 

  • Tasker DG, Asay BW, King JC, Sanders VE, Son SF (2006) Dynamic measurements of electrical conductivity in metastable intermolecular composites. J Appl Phy 99:023705

    Article  CAS  Google Scholar 

  • Taton G, Lagrange D, Conedera V, Renaud L, Rossi C (2013) Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane. J Micromech Microeng 23:105009

    Article  CAS  Google Scholar 

  • Tepper F (2000) Nanosize powders produced by electro-explosion of wire and their potential applications. Powder Metall 43:320–322

    CAS  Google Scholar 

  • Thiruvengadathan R, Chung SW, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30:6556–6564

    Article  CAS  Google Scholar 

  • Thiruvengadathan R, Staley C, Geeson JM, Chung S, Raymond KE, Gangopadhyay K, Gangopadhyay S (2015) Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly. Propell Explos Pyrot 40(5):729–734

    Article  CAS  Google Scholar 

  • Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH, Poco JF (2001) Nanostructured energetic materials using sol–gel methodologies. J Non-Cryst Solids 285:338–345

    Article  CAS  Google Scholar 

  • Valliappan S, Swiatkiewicz J, Puszynski JA (2005) Reactivity of aluminum nanopowders with metal oxides. Powder Technol 156:164–169

    Article  CAS  Google Scholar 

  • Vassiliou JK, Mehrotra V, Russell MW, Giannelis EP, McMichael RD, Shull RD, Ziolo RF (1993) Magnetic and optical properties of γ-Fe2O3 nanocrystals. J Appl Phys 73:5109–5116

    Article  CAS  Google Scholar 

  • Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Weihs TP (2004) Joining of stainless-steel specimens with nanostructured Al/Ni foils. J App Phy 95:248–256

    Article  CAS  Google Scholar 

  • Wang H, Jian G, Egan GC, Zachariah MR (2014) Assembly and reactive properties of Al/CuO based nanothermite microparticle. Combust Flame 161:2203–2208

    Article  CAS  Google Scholar 

  • Wang J, Qiao Z, Shen J, Li R, Yang Y, Yang G (2015a) Large-scale synthesis of a porous Co3O4 nanostructure and its application in metastable intermolecular composites. Propell Explos Pyrot 40:514–517

    Article  CAS  Google Scholar 

  • Wang H, Jian G, Zhou W, De Lisio JB, Lee VT, Zachariah MR (2015b) Metal iodate-based energetic composites and their combustion and biocidal performance. ACS Appl Mater Interfaces 7:17363–17370

    Article  CAS  Google Scholar 

  • Watson KW, Pantoya ML, Levitas VI (2008) Fast reactions with nano-and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame 155:619–634

    Article  CAS  Google Scholar 

  • Wen JZ, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen NH, Persic J, Petre CF, Zhou YN (2013) Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites. Nanoscale Res Lett 8:1–9

    Article  CAS  Google Scholar 

  • Yan N, Qin L, Hao H, Hui L, Zhao F, Feng H (2017) Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: enhanced energy release and reduced electrostatic ignition hazard. Appl Surf Sci 408:51–59

    Article  CAS  Google Scholar 

  • Yang Y, Xu D, Zhang K (2012) Effect of nanostructures on the exothermic reaction and ignition of Al/CuOx based energetic materials. J Mater Sci 47:1296–1305

    Article  CAS  Google Scholar 

  • Yarrington CD, Son SF, Foley TJ, Obrey SJ, Pacheco AN (2011) Nano aluminum energetics: the effect of synthesis method on morphology and combustion performance. Propell Explos Pyrot 36:551–557

    Article  CAS  Google Scholar 

  • Yavorovsky NA (1995) Method of production of highly dispersed powders of inorganic materials. Patent of Russian Federation 2048277

    Google Scholar 

  • Yi Z, Ang Q, Li N, Shan C, Li Y, Zhang L, Zhu S (2018) Sulfate-based nanothermite: a “green” substitute of primary explosive containing lead. ACS Sustain Chem Eng (accepted)

    Google Scholar 

  • Yin Y, Li X, Shu Y, Guo X, Zhu Y, Huang X, Bao H, Xu K (2017a) Highly-reactive Al/CuO nanoenergetic materials with a tubular structure. Mater Des 5:104–110

    Article  CAS  Google Scholar 

  • Yin Y, Li X, Shu Y, Guo X, Bao H, Li W, Zhu Y, Li Y, Huang X (2017b) Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output. Mater Chem Phy 194:182–187

    Article  CAS  Google Scholar 

  • Zakiyyan N, Wang A, Thiruvengadathan R, Staley C, Mathai J, Gangopadhyay K, Maschmann MR, Gangopadhyay S (2018) Combustion of aluminum nanoparticles and exfoliated 2D molybdenum trioxide composites. Combust Flame 187:1–10

    Article  CAS  Google Scholar 

  • Zamkov MA, Conner RW, Dlott DD (2007) Ultrafast chemistry of nanoenergetic materials studied by time-resolved infrared spectroscopy: aluminum nanoparticles in Teflon. J Phys Chem C 111:10278–10284

    Article  CAS  Google Scholar 

  • Zarko VE, Gromov AA (eds) (2016) Energetic nanomaterials: synthesis, characterization, and application. Elsevier, Amsterdam

    Google Scholar 

  • Zhang D, Li X (2015) Fabrication and Kinetics Study of Nano-Al/NiO Thermite Film by Electrophoretic Deposition. J Phys Chem A 119:4688–4694

    Article  CAS  Google Scholar 

  • Zhang K, Rossi C, Rodriguez GAA, Tenailleau C, Alphonse P (2007) Development of a nano-Al/CuO based energetic material on silicon substrate. Appl Phys Lett 91:3117

    Google Scholar 

  • Zhang W, Yin B, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl Mater Interfaces 5:239–242

    Article  CAS  Google Scholar 

  • Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2010) Time-resolved mass spectrometry of the xothermic reaction between nanoaluminum and metal oxides: the role of oxygen release. J Phys Chem 114:14269–14275

    CAS  Google Scholar 

  • Zhou X, Wang Y, Cheng Z, Ke X, Jiang W (2017) Facile preparation and energetic characteristics of core-shell Al/CuO metastable intermolecular composite thin film on a silicon substrate. Chem Eng J 328:585–590

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaibal Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H., Banerjee, S. (2019). Nanostructured Energetic Composites: An Emerging Paradigm. In: Bhattacharya, S., Agarwal, A., Rajagopalan, T., Patel, V. (eds) Nano-Energetic Materials. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3269-2_3

Download citation

Publish with us

Policies and ethics