Skip to main content

Solid Energetic Materials-Based Microthrusters for Space Applications

  • Chapter
  • First Online:
Nano-Energetic Materials

Abstract

In this global scenario, the current state-of-the-art technologies in energy policy and management systems involve the integration of solid propellants/energetic materials into microelectromechanical system (MEMS) to exploit the onboard thermal, mechanical, and chemical energy for civilian and defense needs. The solid propellants are recognized as attractive onboard energy sources owing to contain high energy density and rapid energy release and high actuation pressure as demanded in micro-propulsion. Microthrusters are used to propel and guide the missiles, shells, and also to orient and propel the satellites and to launch the rockets. This chapter details the technological developments and advancements made in the design, fabrication, and modeling of solid energetic materials (propellants and nano-thermites)-based microthrusters and their characterization in terms of propulsion performance as applied for space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technology challenges in solid energetic materials for micro propulsion applications.

References

  • Apperson SJ, Bezmelnitsyn AV, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Balas WA, Anderson PE, Nicolich SM (2009) Characterization of nanothermite material for solid-fuel microthruster applications. J Propul Power 25:1086–1091

    Article  CAS  Google Scholar 

  • Helvejian H (1999) Microengineering aerospace systems. AIAA

    Google Scholar 

  • Lee J, Kim T (2013) MEMS solid propellant thruster array with micro membrane igniter. Sens Actuators, A 190:52–60

    Article  CAS  Google Scholar 

  • Liu X, Li T, Li Z, Ma H, Fang S (2015) Design, fabrication and test of a solid propellant microthruster array by conventional precision machining. Sens Actuators, A 236:214–227

    Article  CAS  Google Scholar 

  • Orieux S, Rossi C, Esteve D (2002) Compact model based on a lumped parameter approach for the prediction of solid propellant micro-rocket performance. Sens Actuators, A 101:383–391

    Article  CAS  Google Scholar 

  • Patel VK, Bhattacharya S (2013) High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. ACS Appl Mat Interfaces 5:13364–13374

    Article  CAS  Google Scholar 

  • Patel VK, Ganguli A, Kant R, Bhattacharya S (2015) Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv 5:14967–14973

    Article  CAS  Google Scholar 

  • Patel VK, Kant R, Choudhary A, Painuly M, Bhattacharya S (2018) Performance characterization of Bi2O3/Al nanoenergetics blasted micro-forming system. Defence Technol. https://doi.org/10.1016/j.dt.2018.07.005

  • Rossi C (2002) Micropropulsion for space—a survey of MEMS-based micro thrusters and their solid propellant technology. Sens Update 10:257–292

    Article  CAS  Google Scholar 

  • Rossi C, Do Conto T, Esteve D, Larangot B (2001) Design, fabrication and modelling of MEMS-based microthrusters for space application. Smart Mater Struct 10:1156

    Article  CAS  Google Scholar 

  • Rossi C, Orieux S, Larangot B, Do Conto T, Esteve D (2002) Design, fabrication and modeling of solid propellant microrocket-application to micropropulsion. Sens Actuators, A 99:125–133

    Article  CAS  Google Scholar 

  • Rossi C, Larangot B, Lagrange D, Chaalane A (2005) Final characterizations of MEMS-based pyrotechnical microthrusters. Sens Actuators, A 121:508–514

    Article  CAS  Google Scholar 

  • Rossi C, Larangot B, Pham PQ, Briand D, de Rooij NF, Puig-Vidal M, Samitier J (2006) Solid propellant microthrusters on silicon: design, modeling, fabrication, and testing. J Microelectromech Syst 15:1805–1815

    Article  Google Scholar 

  • Rossi C, Zhang K, Estève D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16:919–931

    Article  CAS  Google Scholar 

  • Ru C, Wang F, Xu J, Dai J, Shen Y, Ye Y, Zhu P, Shen R (2017) Superior performance of a MEMS-based solid propellant microthruster (SPM) array with nanothermites. Microsyst Technol 23:3161–3174

    Article  CAS  Google Scholar 

  • Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2013) Fast-impulse nanothermite solid-propellant miniaturized thrusters. J Propul Power 29:1400–1409

    Article  CAS  Google Scholar 

  • Staley CS, Raymond KE, Thiruvengadathan R, Herbst JJ, Swaszek SM, Taylor RJ, Gangopadhyay K, Gangopadhyay S (2014) Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturized nanothermite thrusters. Propellants Explos Pyrotech 39:374–382

    Article  CAS  Google Scholar 

  • Tanaka S, Hosokawa R, Tokudome SI, Hori K, Saito H, Watanabe M, Esashi M (2003) MEMS-based solid propellant rocket array thruster with electrical feedthroughs. Trans Jpn Soc Aeronaut Space Sci 46:47–51

    Article  CAS  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2004) Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. J Micromech Microeng 14:785

    Article  CAS  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2005a) Development of a low-temperature co-fired ceramic solid propellant microthruster. J Micromech Microeng 15:944

    Article  Google Scholar 

  • Zhang KL, Chou SK, Ang SS, Tang XS (2005b) A MEMS-based solid propellant microthruster with Au/Ti igniter. Sens Actuators, A 122:113–123

    Article  CAS  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2006) Performance prediction of a novel solid-propellant microthruster. J Propul Power 22:56–63

    Article  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2007) Investigation on the ignition of a MEMS solid propellant microthruster before propellant combustion. J Micromech Microeng 17:322

    Article  CAS  Google Scholar 

  • Zhang T, Li GX, Chen J, Yu YS, Liu XH (2016) Effect of wall heat transfer characteristic on the micro solid thruster based on the AP/HTPB aerospace propellant. Vacuum 134:9–19

    Article  CAS  Google Scholar 

  • Zhou X, Torabi M, Lu J, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mat Interfaces 6:3058–3074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V.K., Katiyar, J.K., Bhattacharya, S. (2019). Solid Energetic Materials-Based Microthrusters for Space Applications. In: Bhattacharya, S., Agarwal, A., Rajagopalan, T., Patel, V. (eds) Nano-Energetic Materials. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3269-2_11

Download citation

Publish with us

Policies and ethics