Skip to main content

Role of Cellulases in Food, Feed, and Beverage Industries

  • Chapter
  • First Online:
Green Bio-processes

Abstract

The activities of microbial enzymes have been observed and utilized for many centuries, but it has been only in relatively recent times that the use of microbial enzymes has been commercialized. Cellulases are a group of enzymes consisting of three major components, endoglucanase, exoglucanase, and β-d-glucosidase of which endoglucanase acts on carboxymethyl cellulose causing random scission of cellulose chains yielding glucose and cello-oligosaccharides, exoglucanase acts on microcrystalline cellulose (Avicel) liberating cellobiose as the primary product β-glucosidase works on cellobiose to release glucose. All these enzymes act synergistically to release glucose as end product. Cellulase has a wide range of applications in Industrial Biotechnology and is the second most used industrial enzyme after protease. In most of the cases, they are used in combination with other enzymes like pectinase, hemicellulase, ligninase, etc. Some of the most important applications of cellulase are in food, brewery and wine, animal feed, textile and laundry, pulp and paper industries, as well as in biomass hydrolysis, agriculture, and research purposes. However, the most promising applications are in the food, feed, and beverage industries. The present review presents an overview of the role of cellulase enzyme in the food, feed, and beverage industries. Other major applications and scope for further research are also mentioned briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidoo KE, Hendry R, Wood BJB (1982) Solid state fermentations. Adv Appl Microbiol 28:201–237

    Article  CAS  Google Scholar 

  • Álvarez C, Sosa FMR, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9(2):149–156

    Google Scholar 

  • Amouri B, Gargouri A (2006) Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochem Eng J 32:191–197

    Article  CAS  Google Scholar 

  • Andriani Y, Rochima E, Ratu S, Rahayuningsih SR (2017) Characterization of Bacillus megaterium and Bacillus mycoides bacteria as probiotic bacteria in fish and shrimp feed. KnE Life Sci 2(6):127–135

    Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–25

    Article  CAS  Google Scholar 

  • Arce-Cervantes O, Mendoza GD, Hernandez PA, Meneses M, Torres-Salado N, Loera O (2013) The effects of a lignocellulolytic extract of Fomes sp. EUM1 on the intake, digestibility, feed efficiency and growth of lambs. Anim Nutr Feed Technol 13:360–372

    Google Scholar 

  • Awasthi MK, Wong JWC, Kumar S, Awasthi SK, Wang Q (2018) Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresour Technol 248:160–170

    Google Scholar 

  • Bahkali AH (1996) Influence of various carbohydrates on xylanase production in Verticulum tricorpus. Bioresour Technol 57(3):265–268

    Article  CAS  Google Scholar 

  • Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357

    Article  CAS  Google Scholar 

  • Baraldi IJ, Giordano RLC, Zangirolami TC (2016) Enzymatic hydrolysis as an environmentally friendly process compared to thermal hydrolysis for instant coffee production. Br J Chem Eng 33(4):763–771

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  Google Scholar 

  • Bhat MK (2001) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–387

    Article  Google Scholar 

  • Birsan C, Johnson P, Joshi M, MacLeod A, McIntosh L, Monem V, Nitz M, Rose DR, Tull D, Wakarchuck WW, Wang Q, Warren RAJ, White A, Withers SG (1998) Mechanisms of cellulases and xylanases. Biochem Soc Trans 26(2):156–160

    Article  CAS  Google Scholar 

  • Bommarius AS, Riebel BR (2005) Applications of enzymes as bulk actives: detergents, textiles, pulp and paper, animal feed. In: Biocatalysis. Wiley, pp 135–158

    Google Scholar 

  • Bond K, Stutzenberger F (1989) A note on the localization of cellulosome formation in Thermomonospora curvata. J Appl Bacteriol 67:605–609

    Google Scholar 

  • Buchert J, Oksanen T, Pere J, Siika-Aho M, Suurnakki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Trichoderma & Gliocladium—enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London, UK, pp 343–363

    Google Scholar 

  • Cannel E, Moo-Young M (1980) Solid state fermentation systems I. Process Biochem 15(5):2–7

    CAS  Google Scholar 

  • Chandrasekharan M (2012) Valorization of food processing by-products. CRC-Taylor Press, New York

    Book  Google Scholar 

  • Dean DB, Staples CR, Littell RC, Kim S, Adesogan AT (2013) Effect of method of adding a fibrolytic enzyme to dairy cow diets on feed intake digestibility, milk production, ruminal fermentation, and blood metabolites. Anim Nutr Feed Technol 13:337–353

    CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, Clostridia and ethanol. Microbiol Mol Biol Rev 69:124–154

    Google Scholar 

  • Din N, Damude HG, Gilkes NR, Miller RC, Warren RAJ, Kilburn DG (1994) C1-Cx revisited: intra-molecular synergism in a cellulase. Proc Natl Acad Sci (USA) 91:11383–11387

    Google Scholar 

  • Eriksen N (1996) Detergents. In: Industrial enzymology, 2nd edn. Stockton Press, New York, pp 189–200

    Google Scholar 

  • Esterbauer H, Driguez H, Viet C, Schülein M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36(1):51–65

    Article  CAS  Google Scholar 

  • Galante YM, De Conti A, Monterverdi R (1998) Application of Trichoderma enzymes in food and feed industries. In: Trichoderma & gliocladium—enzymes, biological control and commercial. Taylor & Francis, London, UK, pp 327–342

    Google Scholar 

  • Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15(19)

    Google Scholar 

  • Giraldo LA, Tejido M, Ranilla MJ, Ramos S, Carro MD (2008) Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J Anim Sci 86:1617–1623

    Article  CAS  Google Scholar 

  • Grassin C, Fauquembergue P (1996) Fruit juices. In: Industrial enzymology, 2nd edn. Stockton Press, New York, pp 227–264

    Google Scholar 

  • Gupta C, Jain P, Kumar D, Dixit AK, Jain RK (2015) Production of cellulase enzyme from isolated fungus and its application as efficient refining aid for production of security paper. Int J Appl Microbiol Biotechnol Res 3:11–19

    Google Scholar 

  • Han TC, Nam ND, Hing Anh LT, Vu TA, Man PV (2016) Enzyme assisted extraction of polyphenols from the old tea leaves. J Nutr Health Sci 3(4)

    Google Scholar 

  • Harrison GA, Tricario JM (2007) Effects of an Aspergillus oryzae extract containing ɑ-amylase activity on lactational performance in commercial dairy herds. Prof Anim Sci 23(3):291–294

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 280:309–316

    Article  CAS  Google Scholar 

  • Henrissat H, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 36:722–726

    Article  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1985) 31P NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J Biol Chem 25(260):7442–7451

    Google Scholar 

  • Howard RL, Abosti E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Google Scholar 

  • Immanuel G, Bhagavath C, Iyappa Raj P, Esakkiraj P, Palavesam A (2006) Production and partial purification of cellulase by Aspergillus niger and A. fumigates fermented in coir waste and sawdust. Internet J Microbiol 3(1):1–11

    Google Scholar 

  • Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res 4:44–55

    Google Scholar 

  • International Feed Industry Federation. http://www.ifif.org/pages/t/The+global+feed+industry. Last accessed 2018/07/08

  • International Feed Industry Federation—Annual report 2016/17. http://annualreport.ifif.org. Last accessed 2018/07/08

  • Jadhav AR, Girdhe AV, More SM, More SB, Khan S (2013) Cellulase production by utilizing agricultural wastes. Res J Agric For Sci 1(7):6–9

    Google Scholar 

  • Jain P, Jain RK (2016) Enhanced cellulase production from isolated fungus Aspergillus niger RKJP and its application in lignocellulosic saccharification for bioethanol production. Biotechnol Res 2(2):61–68

    Google Scholar 

  • Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861

    Google Scholar 

  • Juturu V, Wu JC (2014) Microbial Cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203

    Article  CAS  Google Scholar 

  • Kantelinen A, Jokinen O, Sarkki ML, Pettersson C, Sundberg K, Eckerman C, Ekman R, Holmbom B (1995) Effects of enzymes on the stability of colloidal pitch. In: Proceedings of 8th international symposium on wood and pulping chemistry, vol 2, Helsinki, Finland

    Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2008) Network relationships of bacteria in a stable mixed culture. Microb Ecol 56(3):403–411

    Article  CAS  Google Scholar 

  • Kato S, Yoshida R, Yamaguchi T, Sato T, Yumoto I, Kamagata Y (2014) The effects of elevated CO2 concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium. Front Microbiol 5:575

    Google Scholar 

  • Kim IH, Hancock JD, Hines RH, Risley CR (1993) Effects of cellulase enzymes and bacterial feed additives on the nutritional value of sorghum grain for finishing pigs. Asian-Australas J Anim Sci 11(5):538–544

    Article  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 1–10

    Google Scholar 

  • Kumar S (2015) Role of enzymes in fruit juice processing and its quality enhancement. Adv Appl Sci Res 6(6):114–124

    CAS  Google Scholar 

  • Ladish MR, Lun KW, Volch M, Taso GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb Technol 5:82–90

    Article  Google Scholar 

  • Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660

    Article  CAS  Google Scholar 

  • Lewis SM (1996) Fermentation alcohol. In: Industrial enzymology, 2nd edn. Stockton Press, New York, pp 11–48

    Google Scholar 

  • Li K, Nagendra Prabhu G, Cooper DA, Xu F, Elder T, Eriksson K-EL (2001) Development of new Laccase-mediators for pulp bleaching. Oxidative Delignification Chem 785:400–412

    Google Scholar 

  • Li Q, Jiao J, Tang S, He Z, Zhou C, Han X, Wang M, Kang J, Odongo NE, Tan Z (2015) Effects of dietary cellulase and xylanase addition on digestion, rumen fermentation and methane emission in growing goats. Arch Anim Nutr

    Google Scholar 

  • Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Biotechnology of microbial enzymes. Elsevier, pp 267–298

    Google Scholar 

  • Lonsane BK (1994) Resurgence of interest in solid state fermentation: reasons and justifications. In: Solid state fermentation. Wiley Eastern Ltd., New Delhi, pp 11–20

    Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Google Scholar 

  • Malik S, Sharma S, Sharma J, Mandhan RP (2015) Bioprocessing of crop residues using fibrolytic enzymes and Flavobacterium bolustinum for enriching animal feed. Int J Biotechnol Wellness Ind 4:12–17

    Google Scholar 

  • Mandeks M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278

    Google Scholar 

  • Manfredi AP, Ballesteros I, Sáez F, Perotti NI, Martínez MA, Negro MJ (2018) Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresour Technol 260:241–247

    Google Scholar 

  • Margo LD, Silveira VCC, de Menezes EW, Benvenutti EV, Nicolodi S, Hertz PF, Klein MP, Rodrigues RC (2018) Magnetic biocatalysts of pectinase and cellulase: synthesis and characterization of two preparations for application in grape juice clarification. Int J Biol Macromol 115:35–44

    Google Scholar 

  • Moubasher A-AH, Ismail MA, Hussein NA, Gouda HA (2016) Enzyme producing capabilities of some extremophilic fungal strains isolated from different habitats of Wadi El-Natrun, Egypt. Part 2: cellulase, xylanase and pectinase. Eur J Biol Res 6(2):103–111

    Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Br J Microbiol 42(3):1119–1127

    Google Scholar 

  • Mukhopadhyay S, Chatterjee NC (2010) Bioconversion of water hyacinth hydrolysate into ethanol. Bioresources 5(2):1301–1310

    Google Scholar 

  • Murad HA, Azzaz HH (2010) Cellulase and dairy animal feeding. Biotechnology 9(3):238–256

    Article  CAS  Google Scholar 

  • Murugan A, Singh M, Ranjit AJA (2013) Sugarcane. In: Valorization of food processing by-products. CRC-Taylor & Francis, New York, pp 415–454

    Google Scholar 

  • Nagendra Prabhu G (2016) Economic impact of aquatic weeds—a third world approach. J Aquat Biol Fish 4:8–14

    Google Scholar 

  • Nagendra Prabhu G, Chandrasekharan M (1996) L-Glutaminase production by marine Vibrio costicola under solid state fermentation using different substrates. J Mar Biotechnol 4:176–179

    Google Scholar 

  • Nagendra Prabhu G, Chandrasekharan M (1997) Impact of process parameters on L-glutaminase production by marine Vibrio costicola in solid state fermentation using polystyrene as an inert support. Process Biochem 32(4):285–289

    Google Scholar 

  • Neagu D, Leopold LF, Thonart P, Destain J, Socaciu C (2014) Enzyme assisted extraction of carotenoids and phenolic derivatives from tomato. Bull UASVM Anim Sci Biotechnol 71(1):20–26

    Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interactions. Biochem J 298:705–710

    Article  CAS  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. In: Proceedings of the 20th European brewery chemistry congress, Helsinki, Finland

    Google Scholar 

  • Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA (2004) Enzyme production and profile by Aspergillus niger during solid substrate fermentation using palm kernel cake as substrate. Appl Biochem Biotechnol 118:73–79

    Article  CAS  Google Scholar 

  • Pere J, Paavilainen L, Siika-Aho M, Cheng Z, Viikari L (1996) Potential use of enzymes in drainage control of non-wood pulps. In: Proceedings of 3rd international non-wood fibre pulping and paper making conference, vol 2, Beijing

    Google Scholar 

  • Rapp P, Beerman A (1991) Bacterial cellulases. In: Biosynthesis and biodegradation of cellulose. Marcel Dekker, Inc., New York, pp 535–595

    Google Scholar 

  • Reese ET, Sui RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3(3):235–258

    Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:461

    Google Scholar 

  • Sankarraj N, Nallathambi G (2018) Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydr Polym 191:95–102

    Google Scholar 

  • Saranraj P, Naidu MA (2014) Microbial pectinases: a review. Global J Tradit Med Syst 3:1–9

    Google Scholar 

  • Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh SE, Govindwar SP, Oh MK (2014) Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for bio-hydrogen production. Appl Biochem Biotechnol 174(8):2801–2817

    Article  CAS  Google Scholar 

  • Schingoethe DJ, Stegeman GA, Treacher RJ (1999) Response of lactating dairy cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding. J Dairy Sci 82:996–1003

    Google Scholar 

  • Shida Y, Furukawa T, Ogasawara W (2016) Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Biosci Biotechnol Biochem

    Google Scholar 

  • Shin CS, Lee JP, Lee JS, Park SC (2000) Enzyme production of Trichoderma reesei rut C-30 on various lignocellulosic substrates. Appl Biochem Biotechnol 84(1–9):237–245

    Article  Google Scholar 

  • Sims CA, Bates RP (1994) Challenges to processing tropical fruit juices: banana as an example. Proc Florida State Hortic Soc 107:315–319

    Google Scholar 

  • Singh N, Devi A, Jaryal R, Rani K (2018) An ecofriendly and efficient strategy for cost effective production of lignocellulotic enzymes. Waste Biomass Valorization 9(6):891–898

    Google Scholar 

  • Singhania RR, Saini R, Adsul M, Saini JK, Mathur A, Tuli D (2015) An integrative process for bio-ethanol production employing SSF produced cellulase without extraction. Biochem Eng J 102:45–48

    Google Scholar 

  • Sirohi R, Singh A, Tarafdar A, Shahi NV, Verma AV, Kushwaha A (2018) Cellulase production from pre-treated pea hulls using Trichoderma reesei under submerged fermentation. Waste Biomass Valorization 1–9

    Google Scholar 

  • Snishamol C (2012) Utilization of Salvinia molesta for cellulase production under solid state fermentation. PhD thesis, University of Kerala, Thiruvananthapuram, Kerala

    Google Scholar 

  • Snishamol C, Suresh Chandra Kurup R, Nagendra Prabhu G (2001) Isolation and preliminary characterisation of cellulolytic bacteria associated with common aquatic weeds of Kerala. In: Annual conference on microbial biotechnology, Association of Microbiologists of India, Gulbarga, Karnataka, India

    Google Scholar 

  • Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, Dell’Orto V, Savoini G (2007) Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Ruminant Res 67(1):7–13

    Article  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases- production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Suresh Chandra Kurup R, Nagendra Prabhu G (2001) Utilization of water hyacinth for cellulase production using native microflora under SSF. In: International conference on new horizons in biotechnology, Trivandrum, Kerala, India

    Google Scholar 

  • Suresh Chandra Kurup R, Snishamol C, Nagendra Prabhu G (2005) Cellulase production by native bacteria using water hyacinth as substrate under solid state fermentation. Malays J Microbiol 1(2):25–29

    Google Scholar 

  • Suresh PV, Nagendra Prabhu G (2012) Valorization of seafood processing by-products by biological methods. In: Valoriztion of food processing by-products. CRC-Taylor Press, New York, pp 685–736

    Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92(4):305–311

    Article  CAS  Google Scholar 

  • Szijártó N, Faigl Z, Réczey K, Mézes M, Bersényi A (2004) Cellulase fermentation on a novel substrate (waste cardboard) and subsequent utilization of home-produced cellulase and commercial amylase in a rabbit feeding trial. Ind Crops Prod 20:49–57

    Google Scholar 

  • Tabssum F, Irfan M, Shakir HA, Qazi JI (2018) RSM based optimization of nutritional conditions for cellulase mediated saccharification by Bacillus cereus. J Biol Eng 12(7)

    Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Tolan SJ, Foody B (1999) Cellulase from submerged fermentation. In: Tsao GT (eds) Recent progress in bioconversion of lignocellulosics. Springer, Berlin, pp 43–49

    Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  Google Scholar 

  • Tony G (1996) Baking. In: Industrial enzymology, 2nd edn. Stockton Press, New York, pp 87–102

    Google Scholar 

  • Vaishnav N, Singh N, Adsul M, Dixit P (2018) Penicillium: the next emerging champion for cellulase. Bioresour Technol Rep 2:131–140

    Google Scholar 

  • Wachinger G, Bronnenmeier K, Staudenbauer WL, Schrempf H (1989) Identification of mycelium-associated cellulase from Streptomyces reticuli. Appl Environ Microbiol 55:2633–2657

    Google Scholar 

  • Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 44(4):325–337

    Article  CAS  Google Scholar 

  • Xu X, Li J, Shi P, Ji W, Liu B, Zhang Y, Yao B, Fan Y, Zhang W (2016) The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Sci Rep 6:31108

    Google Scholar 

  • Xue D, Zeng X, Lin D, Yao S (2018) Ethanol tolerant endoglucanase from Aspergillus niger isolated from wine fermentation cellar. Biocatal Agric Biotechnol 15:19–24

    Google Scholar 

  • Yang WZ, Beauchemin KA, Rode LM (2000) A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J Dairy Sci 83:2512–2520

    Article  CAS  Google Scholar 

  • Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421–450

    Google Scholar 

  • Yang F, Gong Y, Liu G, Zhao S, Wang J (2015) Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J Microbiol Biotechnol 25(7):1101–1107

    Google Scholar 

  • Zhang X-Z, Zhang Y-HP (2013) Cellulases: characteristics, sources, production, and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, 1st edn. Wiley, pp 131–146

    Google Scholar 

Download references

Acknowledgements

The corresponding author (G. Nagendra Prabhu) is grateful to Department of Science and Technology, Government of India, University Grants Commission, Government of India, Kerala State Council for Science, Technology & Environment and Kerala Biotechnology Commission for providing financial support to conduct the projects for cellulase production using aquatic weeds. V. Anoop Kumar thanks the University Grants Commission for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagendra Prabhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anoop Kumar, V., Suresh Chandra Kurup, R., Snishamol, C., Nagendra Prabhu, G. (2019). Role of Cellulases in Food, Feed, and Beverage Industries. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_17

Download citation

Publish with us

Policies and ethics