Skip to main content

α-l-Arabinofuranosidase: A Potential Enzyme for the Food Industry

  • Chapter
  • First Online:
Book cover Green Bio-processes

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Cellulose, hemicellulose, pectin, and lignin are the major components of plant cell wall. Hemicellulose is the second most abundant carbohydrate polymer on the earth. Hemicelluloses are branched, hetero-polysaccharides formed by β-(1 → 4)-linked backbones of hexoses like glucose (xyloglucan), galactose (galactan), mannose (mannan) or pentoses like xylose (xylan), and arabinose (arabinan). Xylan contains the backbone of 1,4-linked-β-d-xylopyranose with various side-chain substitutions such as arabinose, acetic acid, glucuronic acid, ferulic, acid, and p-coumaric acid. l-arabinose side chain is found in hemicelluloses like arabinan, arabinoxylan, oat spelt xylan, and arabinogalactan. The extent of side-chain substitution depends on the source of the xylan, which makes its structure complex and hinders its enzymatic hydrolysis. α-l-arabinofuranosidase hydrolyzes arabinose side chain present at α-1,2-, α-1,3-, and α-1,5-positions in arabinoxylan, thus potentiating other xylanolytic enzymes to act efficiently on the backbone. Therefore, α-l-arabinofuranosidase has potential application in agro-industrial processes because of its functioning synergistically with other hemicellulases. α-l-arabinofuranosidases are used for improving bread quality, for wine flavor, for clarification of fruit juices, as supplement for feedstock for enhancing digestion, in the production of medicinal compounds, and in the production of oligosaccharide and modification of their side chains. This chapter presents a comprehensive overview of α-l-arabinofuranosidase, sources, production, and its applications in food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Luis AS, Bras JL, Ghosh A, Gautam S, Gupta MN, Fontes CM, Goyal A (2013) A novel α-l-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf) from Clostridium thermocellum. PLoS ONE 8(9):e73575

    Article  CAS  Google Scholar 

  • Amrein TM, Gränicher P, Arrigoni E, Amadò R (2003) In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. LWT-Food Sci Technol 36(4):451–460

    Article  CAS  Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Article  CAS  Google Scholar 

  • Belda I, Ruiz J, Esteban-Fernández A, Navascués E, Marquina D, Santos A, Moreno-Arribas M (2017) Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22(2):189

    Article  Google Scholar 

  • Berg JO, Nord CE, Wadström T (1978) Formation of glycosidases in batch and continuous culture of Bacteroides fragilis. Appl Environ Microbiol 35(2):269–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birgisson H, Fridjonsson O, Bahrani-Mougeot FK, Hreggvidsson GO, Kristjansson JK, Mattiasson B (2004) A new thermostable α-l-arabinofuranosidase from a novel thermophilic bacterium. Biotech Lett 26(17):1347–1351

    Article  CAS  Google Scholar 

  • Bosetto A, Justo PI, Zanardi B, Venzon SS, Graciano L, dos Santos EL, Simão RDCG (2016) Research progress concerning fungal and bacterial β-xylosidases. Appl Biochem Biotechnol 178(4):766–795

    Article  CAS  Google Scholar 

  • Bourgois TM, Van Craeyveld V, Van Campenhout S, Courtin CM, Delcour JA, Robben J, Volckaert G (2007) Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase. Appl Microbiol Biotechnol 75(6):1309–1317

    Article  CAS  Google Scholar 

  • Brett C, Waldron K (1990) Cell wall structure and the skeletal functions of the wall. Physiology and. Springer, Dordrecht, pp 4–57

    Google Scholar 

  • Carapito R, Imberty A, Jeltsch JM, Byrns SC, Tam PH, Lowary TL, Varrot A, Phalip V (2009) Molecular basis of arabinobio-hydrolase activity in phytopathogenic fungi. Crystal structure and catalytic mechanism of fusarium graminearum GH93 exo-alpha-l-arabinanase. J Biol Chem

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30

    Article  CAS  Google Scholar 

  • Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S, Ichinose H, Lewis RJ, Viksø-Nielsen A, Gilbert HJ, Marles-Wright J (2011) The structure and function of an arabinan-specific α-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J Biol Chem 286(17):15483–15495

    Article  CAS  Google Scholar 

  • Churms SC, Merrifield EH, Stephen AM, Walwyn DR, Polson A, van der Merwe KJ, Spies HS, Costa N (1983) An l-arabinan from apple-juice concentrates. Carbohyd. Res. 113(2):339–344

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850

    Article  CAS  Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77(1):237–246

    Article  CAS  Google Scholar 

  • Culleton H, McKie VA, de Vries RP (2014) Overexpression, purification and characterisation of homologous α-l-arabinofuranosidase and endo-1,4-β-d-glucanase in Aspergillus vadensis. J Ind Microbiol Biotechnol 41(11):1697–1708

    Article  CAS  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Microbiol 70(6):443–459

    CAS  Google Scholar 

  • de Camargo BR, Claassens NJ, Quirino BF, Noronha EF, Kengen SW (2018) Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8. Enzyme Microb Technol 109:74–83

    Article  Google Scholar 

  • de Groot MJ, van de Vondervoort PJ, de Vries RP, Ruijter GJ, Visser J (2003) Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149(5):1183–1191

    Article  Google Scholar 

  • De Vries JA, Rombouts FM, Voragen AGJ, Pilnik W (1982) Enzymic degradation of apple pectins. Carbohyd Polym 2(1):25–33

    Article  Google Scholar 

  • Debeche T, Cummings N, Connerton I, Debeire P, O’Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable α-l-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 66(4):1734–1736

    Article  CAS  Google Scholar 

  • Dervilly-Pinel G, Rimsten L, Saulnier L, Andersson R, Åman P (2001) Water-extractable arabinoxylan from pearled flours of wheat, barley, rye and triticale. Evidence for the presence of ferulic acid dimers and their involvement in gel formation. J Cereal Sci 34(2):207–214

    Article  CAS  Google Scholar 

  • DeVries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohyd Res 327(4):401–410

    Article  CAS  Google Scholar 

  • Dhillon A, Fernandes VO, Dias FM, Prates JA, Ferreira LM, Fontes CM, Centeno MSJ, Goyal A (2016) A new member of family 11 polysaccharide lyase, rhamnogalacturonan lyase (CtRGLf) from Clostridium thermocellum. Mol. Biotechnol. 58(4):232–240

    Article  CAS  Google Scholar 

  • Dotsenko G, Meyer AS, Canibe N, Thygesen A, Nielsen MK, Lange L (2017) Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Convers Biorefinery 8:1–11

    Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21(9):542–556

    Article  CAS  Google Scholar 

  • Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P (2018) Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–584

    Article  CAS  Google Scholar 

  • Faulds CB, Kroon PA, Saulnier L, Thibault JF, Williamson G (1995) Release of ferulic acid from maize bran and derived oligosaccharides by Aspergillus niger esterases. Carbohyd Polym 27(3):187–190

    Article  CAS  Google Scholar 

  • Ferchichi M, Rémond C, Simo R, O’Donohue MJ (2003) Investigation of the functional relevance of the catalytically important Glu28 in family 51 arabinosidases. FEBS Lett 553(3):381–386

    Article  CAS  Google Scholar 

  • Fessas D, Schiraldi A (1998) Texture and staling of wheat bread crumb: effects of water extractable proteins and ‘pentosans’. Thermochim Acta 323(1–2):17–26

    Article  CAS  Google Scholar 

  • Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohyd Res 339(11):2009–2017

    Article  CAS  Google Scholar 

  • Freitas RA, Gorin PAJ, Neves J, Sierakowski MR (2003) A rheological description of mixtures of a galactoxyloglucan with high amylose and waxy corn starches. Carbohyd Polym 51(1):25–32

    Article  CAS  Google Scholar 

  • Gebruers K, Dornez E, Bedo Z, Rakszegi M, Courtin CM, Delcour JA (2010) Variability in xylanase and xylanase inhibition activities in different cereals in the healthgrain diversity screen and contribution of environment and genotype to this variability in common wheat. J Agric Food Chem 58(17):9362–9371

    Article  CAS  Google Scholar 

  • Gobbetti M, Lavermicocca P, Minervini F, De Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and α-l-arabinofuranosidase: a tool to increase the production of acetic acid. J Appl Microbiol 88(2):317–324

    Article  CAS  Google Scholar 

  • Grembecka M (2015) Sugar alcohols-their role in the modern world of sweeteners: a review. Eur Food Res Technol 241(1):1–14

    Article  CAS  Google Scholar 

  • Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T (2007) Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Technol 18(2):64–71

    Article  CAS  Google Scholar 

  • Guo W, Sakata K, Watanabe N, Nakajima R, Yagi A, Ina K, Luo S (1993) Geranyl 6-O-β-d-xylopyranosyl-β-d-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea. Phytochemistry 33(6):1373–1375

    Article  CAS  Google Scholar 

  • Hashimoto S, Shogren MD, Pomeranz Y (1987) Cereal pentosans: their estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chem 64(1):30–34

    CAS  Google Scholar 

  • Holtekj⊘len AK, Uhlen AK, Knutsen SH (2008) Barley carbohydrate composition varies with genetic and abiotic factors. Acta Anaesthesiol Scand Section B-Soil Plant Sci 58(1):27–34

    Google Scholar 

  • Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, Schomburg D (2003) Crystal structure and snapshots along the reaction pathway of a family 51 α-l-arabinofuranosidase. EMBO J 22(19):4922–4932

    Article  Google Scholar 

  • Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML, Rastall RA (2007) In vitro fermentation by human fecal microflora of wheat arabinoxylans. J Agric Food Chem 55(11):4589–4595

    Article  CAS  Google Scholar 

  • İlgü H, Sürmeli Y, Şanlı-Mohamed G (2018) A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. Eur Food Res Technol 244:1–10

    Article  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohyd Polym 28(1):33–48

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products—a review. Food Res Int 41(9):850–868

    Article  CAS  Google Scholar 

  • Jiménez T, Martinez-Anaya MA (1999). Enzymes, a key to improve bread and dough quality: degradation by products and relationship with quality. In: 17th ICC conference of the cereal across the continents, vol 6, No. 9, p. 168

    Google Scholar 

  • Katapodis P, Vardakou M, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur J Nutr 42(1):55–60

    Article  CAS  Google Scholar 

  • Kendall CW, Esfahani A, Jenkins DJ (2010) The link between dietary fibre and human health. Food Hydrocolloids 24(1):42–48

    Article  CAS  Google Scholar 

  • Koistinen VM, Mattila O, Katina K, Poutanen K, Aura AM, Hanhineva K (2018) Metabolic profiling of sourdough fermented wheat and rye bread. Sci Rep 8(1):5684

    Article  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity characterization, primary structures, and COOH-terminal processing. J Biol Chem 278(7):5377–5387

    Article  CAS  Google Scholar 

  • Lempereur I, Rouau X, Abecassis J (1997) Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durumL.) grain and its milling fractions. J Cereal Sci 25(2):103–110

    Article  CAS  Google Scholar 

  • Lu ZX, Walker KZ, Muir JG, Mascara T, O’Dea K (2000) Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr 71(5):1123–1128

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microb Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Margolles A, Clara G (2003) Purification and functional characterization of a novel α-l-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69(9):5096–5103

    Article  CAS  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Nakari-Setälä TIINA, Penttilä MERJA (1996) Cloning of genes encoding alpha-l-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62(10):3840–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo JJ, Di Stefano R (1997) Description of the β-glucosidase activity of wine yeasts. Food Microbiol 14(6):583–591

    Article  CAS  Google Scholar 

  • Mckie VA, Gary W, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo-and an exo-mode of action. Biochem J 323(2):547–555

    Article  CAS  Google Scholar 

  • Möhlig M, Koebnick C, Weickert MO, Lueder W, Otto B, Steiniger J, Twilfert M, Meuser F, Pfeiffer AFH, Zunft HJ (2005) Arabinoxylan-enriched meal increases serum ghrelin levels in healthy humans. Horm Metab Res 37(05):303–308

    Article  Google Scholar 

  • Numan MT, Bhosle NB (2006) α-l-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33(4):247–260

    Article  CAS  Google Scholar 

  • Ochiai A, Itoh T, Kawamata A, Hashimoto W, Murata K (2007) Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonan depolymerization. Appl Environ Microbiol 73(12):3803–3813

    Article  CAS  Google Scholar 

  • Oliveira DS, Telis-Romero J, Da-Silva R, Franco CML (2014) Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem 143:139–146

    Article  CAS  Google Scholar 

  • Ordaz-Ortiz JJ, Saulnier L (2005) Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J Cereal Sci 42(1):119–125

    Article  CAS  Google Scholar 

  • Pérez R, Eyzaguirre J (2016) Aspergillus fumigatus produces two arabinofuranosidases from glycosyl hydrolase family 62: comparative properties of the recombinant enzymes. Appl. Biochem. Biotechnol. 179(1):143–154

    Article  Google Scholar 

  • Rahman AS, Kato K, Kawai S, Takamizawa K (2003) Substrate specificity of the α-l-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohyd Res 338(14):1469–1476

    Article  CAS  Google Scholar 

  • Rao MS, Muralikrishna G (2004) Structural analysis of arabinoxylans isolated from native and malted finger millet (Eleusine coracana, ragi). Carbohyd Res 339(14):2457–2463

    Article  Google Scholar 

  • Rao RSP, Muralikrishna G (2007) Structural characteristics of water-soluble feruloyl arabinoxylans from rice (Oryza sativa) and ragi (finger millet, Eleusine coracana): Variations upon malting. Food Chem 104(3):1160–1170

    Article  CAS  Google Scholar 

  • Ravanal MC, Eyzaguirre J (2015) Heterologous expression and characterization of α-l-arabinofuranosidase 4 from Penicillium purpurogenum and comparison with the other isoenzymes produced by the fungus. Fungal Biol 119(7):641–647

    Article  CAS  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4(5):573–580

    Article  CAS  Google Scholar 

  • Saha BC (2000) α-l-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423

    Article  CAS  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng 107(5):506–511

    Article  CAS  Google Scholar 

  • Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, Kasai N (2011) Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl Microbiol Biotechnol 90(1):137–146

    Article  CAS  Google Scholar 

  • Samuelsen AB, Rieder A, Grimmer S, Michaelsen TE, Knutsen SH (2011) Immunomodulatory activity of dietary fiber: arabinoxylan and mixed-linked beta-glucan isolated from barley show modest activities in vitro. Int J Mol Sci 12(1):570–587

    Article  CAS  Google Scholar 

  • Sartori T, Tibolla H, Prigol E, Colla LM, Costa JAV, Bertolin TE (2015). Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. BioMed Res Int

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263

    Article  CAS  Google Scholar 

  • Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S (1996) l-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45(11):1368–1374

    Article  CAS  Google Scholar 

  • Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shoham Y (2002) The identification of the acid-base catalyst of α-arabinofuranosidase from Geobacillus stearothermophilus T6, a family 51 glycoside hydrolase. FEBS Lett 514(2–3):163–167

    Article  CAS  Google Scholar 

  • Shewry PR, Piironen V, Lampi AM, Edelmann M, Kariluoto S, Nurmi T, Fernandez-Orozco R, Andersson AA, Åman P, Fras A, Boros D (2010) Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. J Agric Food Chem 58(17):9372–9383

    Article  CAS  Google Scholar 

  • Shin HY, Park SY, Sung JH, Kim DH (2003) Purification and Characterization of α-l-arabinopyranosidase and α-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl Environ Microbiol 69(12):7116–7123

    Article  CAS  Google Scholar 

  • Shinozaki A, Kawakami T, Hosokawa S, Sakamoto T (2014) A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan. Enzyme Microb Technol 58:80–86

    Article  Google Scholar 

  • Sjostrom E (2013) Wood chemistry: fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  • Stone B, Morell MK, Khan K, Shewry PR (2009). Wheat: chemistry and technology, 4th edn

    Google Scholar 

  • Suzuki H, Murakami A, Yoshida KI (2013) Motif-guided identification of a glycoside hydrolase family 1 α-l-arabinofuranosidase in Bifidobacterium adolescentis. Biosci Biotechnol Biochem 77(8):1709–1714

    Article  CAS  Google Scholar 

  • Tathod AP, Dhepe PL (2015) Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts. Biores Technol 178:36–44

    Article  CAS  Google Scholar 

  • Taylor EJ, Smith NL, Turkenburg JP, D’souza S, Gilbert HJ, Davies GJ (2006) Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem J 395(1):31–37

    Article  CAS  Google Scholar 

  • Van Laere KM, Hartemink R, Bosveld M, Schols HA, Voragen AG (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48(5):1644–1652

    Article  Google Scholar 

  • Wilkens C, Andersen S, Dumon C, Berrin JG, Svensson B (2017) GH62 arabinofuranosidases: structure, function and applications. Biotechnol Adv 35(6):792–804

    Article  CAS  Google Scholar 

  • Williams PJ, Strauss CR, Wilson B, Massy-Westropp RA (1982) Novel monoterpene disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21(8):2013–2020

    Article  CAS  Google Scholar 

  • Yang X, Shi P, Ma R, Luo H, Huang H, Yang P, Yao B (2015) A new GH43 α-arabinofuranosidase from Humicola insolens Y1: biochemical characterization and synergistic action with a xylanase on xylan degradation. Appl Biochem Biotechnol 175(4):1960–1970

    Article  CAS  Google Scholar 

  • Yang W, Jiang Z, Liu L, Lin Y, Wang L, Zhou S (2017) The effect of pentosanase on the solubilisation and degradation of arabinoxylan extracted from whole and refined wheat flour. J Sci Food Agric 97(3):1034–1041

    Article  CAS  Google Scholar 

  • Yegin S, Altinel B, Tuluk K (2018) A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: effects on dough rheology and bread quality. Food Hydrocolloids 81:389–397

    Article  CAS  Google Scholar 

  • Zelaya VM, Fernández PV, Vega AS, Mantese AI, Federico AA, Ciancia M (2017) Glucuronoarabinoxylans as major cell walls polymers from young shoots of the woody bamboo Phyllostachys aurea. Carbohyd Polym 167:240–249

    Article  CAS  Google Scholar 

  • Zhou J, Bao L, Chang L, Zhou Y, Lu H (2012) Biochemical and kinetic characterization of GH43 β-d-xylosidase/α-l-arabinofuranosidase and GH30 α-l-arabinofuranosidase/β-d-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 39(1):143–152

    Article  CAS  Google Scholar 

  • Zhu F, Du B, Ma Y, Li J (2017) The glycosidic aroma precursors in wine: occurrence, characterization and potential biological applications. Phytochem Rev 16(3):565–571

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, A., Sharma, K., Goyal, A. (2019). α-l-Arabinofuranosidase: A Potential Enzyme for the Food Industry. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_12

Download citation

Publish with us

Policies and ethics