Skip to main content

Amylases for Food Applications—Updated Information

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Discovering of new industrial applications from microorganisms is diverse as they came from variety of environmental niches. The majority of existing biotechnological applications are of microbial origin and enzymes are the most important among them. Microbial enzymes surpass those from animals and plant sources since their ease of production and genetic manipulation, diverse catalytic activities, etc. The role of enzymes in many processes has been known for a long time, in which the enzymes from microorganisms, used particularly for baking, brewing, alcohol production, cheese making etc. Starch represents one of the most pervasive and an important renewable biological resource that forms a major source of food to a large population. Starch hydrolysis forms the basis of many industrial processes and acid hydrolysis was significant during the earlier days. However, this was almost completely replaced by enzymatic hydrolysis, nowadays, since the availability and abundance of starch hydrolasing microorganisms, corrosion-free reaction, and specificity of the reaction. One of the major applications of these enzymes is in the food industry and starch hydrolysis yields a diverse range of products such as glucose, maltose and fructose syrups, cyclodextrins, fat mimetics substances, etc. They also find application as brewing and baking agents. Enzymatic liquefaction and saccharification of starch require higher temperatures; that demands novel thermostable amylases. In this chapter, we are discussing about various aspects of amylase enzymes, their sources, application in the food industry and future prospects of thermostable amylase from mesophilic organisms, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Fattah YR, Soliman NA, El-Toukhy NM, El-Gendi H, Ahmed RS (2012). Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. J Chem

    Google Scholar 

  • Acer Ö, Bekler FM, Pirinççioğlu H, Güven RG, Güven K (2016) Purification and characterization of thermostable and detergent-stable α-amylase from Anoxybacillus sp. AH1. Food Tech Biotechnol 54(1):70

    Google Scholar 

  • Afzal-Javan F, Mobini-Dehkordi M, Saffar B (2013) Amplification, sequencing and cloning of iranian native Bacillus subtilis alpha-amylase gene in Saccharomyces cerevisiae. Jundishapur J Microbiol 6(8):1–7

    Article  Google Scholar 

  • Ahmad N, Rashid N, Haider MS, Akram M, Akhtar M (2014) Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol 80(3):1108–1115

    Article  Google Scholar 

  • Aiyer PV (2005) Amylases and their applications. Afr J Biotechnol 4(13)

    Google Scholar 

  • Aleshin A, Golubev A, Firsov LM, Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J Biol Chem 267(27):19291–19298

    Google Scholar 

  • Ali I, Akbar A, Anwar M, Prasongsuk S, Lotrakul P, Punnapayak H (2015) Purification and characterization of a polyextremophilic α-Amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. In: BioMed research international

    Google Scholar 

  • Ali I, Akbar A, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Punnapayak H (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. In: BioMed research international

    Google Scholar 

  • Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Method 52(3):353–359

    Google Scholar 

  • Argüello-Morales MA, Remaud-Simeon M, Pizzut S, Sarçabal P, Willemot R, Monsan P (2000) Sequence analysis of the gene encoding alternansucrase, a sucrase glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol Lett 182(1):81-85

    Google Scholar 

  • Asoodeh A, Emtenani S, Emtenani S, Jalal R, Housaindokht MR (2014) Molecular cloning and biochemical characterization of a thermoacidophilic, organic-solvent tolerant α-amylase from a Bacillus strain in Escherichia coli. J Mol Catal B Enzym 99:114–120

    Article  CAS  Google Scholar 

  • Banerjee G, Mukherjee S, Bhattacharya S, Ray AK (2016) Purification and characterization of extracellular protease and amylase produced by the bacterial strain, Corynebacterium alkanolyticum ATH3 isolated from fish gut. Arab J Sci Eng 41(1):9–16

    Article  CAS  Google Scholar 

  • Bangs WE, Reineccius GA (1981) Influence of dryer infeed matrices on retention of volatile flavor compounds during spray-drying. J Food Sci 47:254–259

    Article  CAS  Google Scholar 

  • Bano S, Qader SAU, Aman A, Syed MN, Azhar A (2011) Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS PharmSciTech 12(1):255–261

    Article  CAS  Google Scholar 

  • Bertoft E (2007) Composition of clusters and their arrangement in potato amylopectin. Carbohyd Polym 68(3):433–446

    Article  CAS  Google Scholar 

  • Bessler C, Schmitt J, Maurer KH, Schmid RD (2003) Directed evolution of a bacterial α-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 12(10):2141–2149

    Article  CAS  Google Scholar 

  • Bukhari DA, Rehman A (2015) Purification and characterization of α-amylase from Bacillus subtilis isolated from local environment. Pak J Zool 47(4)

    Google Scholar 

  • Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38(10):1397–1403

    Google Scholar 

  • Carrin ME, Ceci LN, Lozano JE (2004) Characterization of starch in apple juice and its degradation by amylases. Food Chem 87:173–178

    Article  CAS  Google Scholar 

  • Chakraborty S, Khopade RGA, Mahadik K, Kokare C (2012) Study on calcium ion independent α-amylase from haloalkaliphilic marine Streptomyces strain A3. Indian J Biotechnol 11(4):427–437

    CAS  Google Scholar 

  • Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T (2009) Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 27(4):423–431

    Article  CAS  Google Scholar 

  • de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3(1):38–51

    Article  Google Scholar 

  • Dekker RFH (1994a) Enzymes in food and beverage processing-1. Food Aust 46(3):136–139

    Google Scholar 

  • Dekker RFH (1994b) Enzymes in food and beverage processing-2 Food Aust 46(4):179–181

    Google Scholar 

  • Dey S, Agarwal SO (1999) Characterization of a thermostable alpha-amylase from a thermophilic Streptomyces megasporus strain SD12. Indian J Biochem Biophys 36:150–157

    CAS  PubMed  Google Scholar 

  • Dey TB, Banerjee R (2015) Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal Agric Biotechnol 4(1):83–90

    Google Scholar 

  • Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y (2018) Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol 115:1151–1156

    Article  CAS  Google Scholar 

  • Dumoulin Y, Cartilier LH, Mateescu MA (1999) Cross-linked amylose tablets containing α-amylase: an enzymatically-controlled drug release system. J Controll Release 60(2–3):161–167

    Article  CAS  Google Scholar 

  • El-Fallal A, Dobara MA, El-Sayed A, Omar N (2012) Starch and microbial α-amylases: from concepts to biotechnological applications. In: Carbohydrates-comprehensive studies on glycobiology and glycotechnology. InTech

    Google Scholar 

  • El-Sayed AK, Dobara MIA, El-Fallal AA, Omar NF (2013) Purification, sequencing, and biochemical characterization of a novel calcium-independent α-amylase AmyTVE from Thermoactinomyces vulgaris. Appl Biochem Biotechnol 170(3):483–497

    Article  CAS  Google Scholar 

  • Feitkenhauer H (2003) Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol 33(2–3):250–258

    Article  CAS  Google Scholar 

  • Fincan SA, Enez B, Özdemir S, Bekler FM (2014) Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus. Carbohyd Polym 102:144–150

    Article  Google Scholar 

  • Harris EMS, Aleshin AE, Firsov LM, Honzatko RB (1993) Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4 Å. resolution. Biochemistry 32(6):1618–1626

    Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(3):781–788

    Article  CAS  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res

    Google Scholar 

  • Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S, Mikami B (2004) Structural and enzymatic analysis of soybean β-amylase mutants with increased pH optimum. J Biol Chem 279(8):7287–7295

    Article  CAS  Google Scholar 

  • Horvathova V, Janecek S, Sturdik E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32

    CAS  PubMed  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9(6):487–495

    Article  CAS  Google Scholar 

  • Hwang SY, Nakashima K, Okai N, Okazaki F, Miyake M, Harazono K, Ogino C, Kondo A (2013) Thermal stability and starch degradation profile of α-amylase from Streptomyces avermitilis. Biosci Biotechnol Biochem 77(12):2449–2453

    Article  CAS  Google Scholar 

  • Ichinose S, Tanaka M, Shintani T, Gomi K (2014) Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression. Appl Microbiol Biotechnol 98(1):335–343

    Article  CAS  Google Scholar 

  • Jana M, Maity C, Samanta S, Pati BR, Islam SS, Mohapatra PKD, Mondal KC (2013) Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: an efficacy testing for preparation of maltooligosaccharides. Ind Crops Prod 41:386–391

    Article  CAS  Google Scholar 

  • Janeček Š (1994) Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1, 6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett 353(2):119–123

    Article  Google Scholar 

  • Janeček Š (2002) How many conserved sequence regions are there in the α-amylase family. Biologia 57(Suppl 11):29–41

    Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135(3):1674–1684

    Article  CAS  Google Scholar 

  • Kar S, Ray RC (2008) Statistical optimization alpha-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Polish J Microbiol 57(1):49–57

    CAS  Google Scholar 

  • Kar S, Ray RC, Mohapatra UB (2008) Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). Polish J Microbiol 57(4):289-96

    Google Scholar 

  • Karakaş B, İnan M, Certel M (2010) Expression and characterization of Bacillus subtilis PY22 α-amylase in Pichia pastoris. J Mol Catal B Enzym 64(3–4):129–134

    Article  Google Scholar 

  • Karmakar M, Ray RR (2011) A maltotriose producing thermostable amylase from Bacillus sp KR11. J Microbiol Biotechnol Res 1(3):91–99

    CAS  Google Scholar 

  • Kim YW, Choi JH, Kim JW, Park C, Kim JW, Cha H, Lee SB, Oh BH, Moon TW, Park KH (2003) Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol 69(8):4866–4874

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  Google Scholar 

  • Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Biores Technol 98(1):150–157

    Article  CAS  Google Scholar 

  • Kulp K, Ponte JG Jr, D’Appolonia BL (1981) Staling of white pan bread: fundamental causes. Crit Rev Food Sci Nutr 15(1):1–48

    Article  CAS  Google Scholar 

  • Kumar CG, Malik RK, Tiwari MP (1998) Novel enzyme-based detergents: an Indian perspective. Curr Sci 75(12):1312–1318

    CAS  Google Scholar 

  • Kumar MDJ, Jayanthisiddhuraj AB, Monica DD, Balakumaran MD, Kalaichelvan PT (2012) Purification and characterization of α-amylase and α–galactosidase from Bacillus Sp. MNJ23 produced in a concomitant medium. Am Eurasian J Agric Environ Sci 12(5):566–573

    Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  Google Scholar 

  • Kuttigounder D, Lingamallu JR, Bhattacharya S (2011) Turmeric powder and starch: selected physical, physicochemical, and microstructural properties. J Food Sci 76(9):C1284–C1291

    Article  CAS  Google Scholar 

  • Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 268(32):24394–24401

    CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2012) Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol 57(5):447–453

    Google Scholar 

  • Li Z, Wu J, Zhang B, Wang F, Ye X, Huang Y, Huang Q, Cui Z (2015) Characterization of a novel maltohexaose-forming α-amylase AmyM from Corallococcus sp. strain EGB. Appl Env Microbiol, pp. AEM-03934

    Google Scholar 

  • Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M (2002) Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn)-dimetal centre by zinc. J Biol Chem

    Google Scholar 

  • Liu Y, Huang L, Jia L, Gui S, Fu Y, Zheng D, Guo W, Lu F (2017) Improvement of the acid stability of Bacillus licheniformis alpha amylase by site-directed mutagenesis. Process Biochem 58:174–180

    Article  CAS  Google Scholar 

  • Liu Y, Lu F, Chen G, Snyder CL, Sun J, Li Y, Wang J, Xiao J (2010) High-level expression, purification and characterization of a recombinant medium-temperature α-amylase from Bacillus subtilis. Biotech Lett 32(1):119

    Article  CAS  Google Scholar 

  • Ma Y, Cai C, Wang J, Sun DW (2006) Enzymatic hydrolysis of corn starch for producing fat mimetics. J Food Eng 73(3):297–303

    Article  CAS  Google Scholar 

  • MacGregor EA, Jespersen HM, Svensson B (1996) A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett 378(3):263-266

    Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41:1–21

    Article  CAS  Google Scholar 

  • Maity S, Mallik S, Basuthakur R, Gupta S (2015) Optimization of solid state fermentation conditions and characterization of thermostable alpha amylase from Bacillus subtilis (ATCC 6633). J Bioprocess Biotech 5:218

    Google Scholar 

  • Malabendu J, Chiranjit M, Saptadip S, Bikas RP (2013) Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: an efficacy testing for preparation of maltooligosaccharides. Ind Crops Prod 41:386–390

    Article  Google Scholar 

  • Malhotra R, Noorwez SM, Satyanarayana T (2000) Production and partial characterization of thermostable and calcium-independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol 31(5):378–384

    Article  CAS  Google Scholar 

  • Manners DJ (1985) Some aspects of the metabolism of starch. Cereal Foods World 30:722–727

    CAS  Google Scholar 

  • Marc JEC, Maarel V, Veen BV, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  Google Scholar 

  • Matsuura Y (2002) A possible mechanism of catalysis involving three essential residues in the enzymes of alpha-amylase family. Biologia 57(Supp 2):21–28

    CAS  Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95(3):697–702

    Article  CAS  Google Scholar 

  • Mehta D, Satyanarayana T (2014) Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl Microbiol Biotechnol 98(10):4503–4519

    Article  CAS  Google Scholar 

  • Mellouli L, Guerineau M, Bejar S, Virolle MJ (1999). Regulation of the expression of amy TO1 encoding a thermostable α-amylase from Streptomyces sp. TO1, in its original host and in Streptomyces lividans TK24. FEMS Microbiol Lett 181(1):31–39

    Google Scholar 

  • Metin K, Ateşlier ZBB, Bıyık HH (2010) Purification and characterization of-amylase produced by Penicillium citrinum HBF62. Afr J Biotech 9(45):7692–7701

    CAS  Google Scholar 

  • Mikami B, Degano M, Hehre EJ, Sacchettini JC (1994) Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Biochemistry 33(25):7779–7787

    Google Scholar 

  • Mobini-Dehkordi M, Javan FA (2012) Application of alpha-amylase in biotechnology. J Biol Today’s World 1(1):15–20

    Google Scholar 

  • Mojsov K (2012) Microbial alpha-amylases and their industrial applications: a review. Int J f Manag IT Eng (IJMIE) 2(10):583–609

    Google Scholar 

  • Myat L, Ryu G (2013) Extrusion with thermostable α-amylase injection as pretreatment method for ethanol production from corn starch. J Microb Biochem Technol 5(2):47–53

    Article  CAS  Google Scholar 

  • Nagarajan DR, Krishnan C (2010) Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Protein Expr Purif 70(1):122–128

    Article  CAS  Google Scholar 

  • Naidu MA, Saranraj P (2013) Bacterial amylase a review. Int J Pharm Biol Arch 4(2):274–287

    Google Scholar 

  • Nithya K, Muthukumar C, Kadaikunnan S, Alharbi NS, Khaled JM, Dhanasekaran D (2017) Purification, characterization, and statistical optimization of a thermostable α-amylase from desert actinobacterium Streptomyces fragilis DA7–7. 3 Biotech 7(5):350

    Google Scholar 

  • Niu DD, Shi GY, Wang ZX (2009) Genetic improvement of alpha-amylase producing Bacillus licheniformis by homolog-mediated alpha-amylase gene amplification. Chin J Biotechnol 25(3):375–380

    CAS  Google Scholar 

  • Obafemi YD, Ajayi AA, Olasehinde GI, Atolagbe OM, Onibokun EA (2018) Screening and partial purification of amylase from Aspergillus Niger isolated from deteriorated tomato (Lycopersicon Esculentum mill.) fruits. Afr J Clin Exp Microbiol 19(1):47–57

    Google Scholar 

  • Ogasahara K, Imanishi A, Isemura T (1970) Studies on thermophilic α-amylase from Bacillus stearothermophilus. J Biochem 67(1):65–75

    Article  CAS  Google Scholar 

  • Özdemir S, Matpan F, Güven K, Baysal Z (2011) Production and characterization of partially purified extracellular thermostable α-amylase by Bacillus subtilis in submerged fermentation (SmF). Prep Biochem Biotechnol 41(4):365–381

    Article  Google Scholar 

  • Pancha I, Jain D, Shrivastav A, Mishra SK, Shethia B, Mishra S, Mohandas VP, Jha B (2010) A thermoactive α-amylase from a Bacillus sp. isolated from CSMCRI salt farm. Int J Biol Macromol 47(2):288–291

    Google Scholar 

  • Pandey A, Nigam PR, Sccol C, Soccol T, Singh V, Mohan DR (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Google Scholar 

  • Pasin TM, Benassi VM, Heinen PR, de Lima Damasio AR, Cereia M, Jorge JA, de Moraes MDLT (2017) Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. Int J Biol Macromol 102:779–788

    Article  CAS  Google Scholar 

  • Pavithra S, Ramesh R, Aarthy M, Ayyadurai N, Gowthaman MK, Kamini NR (2014) Starchy substrates for production and characterization of Bacillus subtilis amylase and its efficacy in detergent and bread making formulations. Starch 66(11–12):976–984

    Article  CAS  Google Scholar 

  • Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160(8):2401–2414

    Article  Google Scholar 

  • Prasanna VA (2005) Amylases and their applications. Afr J Biotech 4(13):1525–1529

    Google Scholar 

  • Przylas I, Tomoo K, Terada Y, Takaha T, Fujii K, Saenger W, Sträter N (2000) Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans1. J Mol Biol 296(3):873–886

    Article  CAS  Google Scholar 

  • Ragunathan R, Padhmadas R (2013) Production, purification and characterization of-amylase using Streptomyces spp. PDS1 and Rhodococcus spp. Isolated from Western Ghats. Int J Curr Microbiol Appl Sci 2(8):206–214

    Google Scholar 

  • Rai S, Solanki MK (2014) Optimization of thermostable alpha-amylase production via mix agricultural-residues and Bacillus amyloliquefaciens. Not Sci Biol 6(1):105–111

    Article  CAS  Google Scholar 

  • Singh R, Singh RK (2015) Role of enzymes in fruit juices clarification during processing: a review. Int J Biol Technol 6(1):1–12

    Article  CAS  Google Scholar 

  • Raul D, Biswas T, Mukhopadhyay S, Kumar Das S, Gupta S (2014) Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochem Res Int

    Google Scholar 

  • Regulapati R, Malav NP, Gummadi NS (2007) Production of thermostable c-amylases by solid state fermentation: a review. Am J Food Technol 2:1–11

    Article  CAS  Google Scholar 

  • Roohi R, Kuddus M, Saima S (2013) Cold-active detergent-stable extracellular α-amylase from Bacillus cereus GA6&58; biochemical characteristics and its perspectives in laundry detergent formulation. J Biochem Technol 4(4):636–644

    CAS  Google Scholar 

  • Saboury AA, Ghasemi S, Dahot MU (2005) Thermodynamic study of magnesium ion binding to alpha-amylase. Indian J Biochem Biophys 42:326–329

    CAS  PubMed  Google Scholar 

  • Saini R, Saini HS, Dahiya A (2017) Amylases: characteristics and industrial applications. J Pharmacogn Phytochem 6(4):1865–1871

    Google Scholar 

  • Sajedi RH, Naderi-Manesh H, Khajeh K, Ahmadvand R, Ranjbar B, Asoodeh A, Moradian F (2005) A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 36(5–6):666–671

    Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Seth R, Sharma H, Sharma SK, Gupta S (2012). Amylase produced by Bacillus sp. SI-136 isolated from sodic-alkaline soil for efficient starch desizing. J Biochem Technol 4(2):604–609

    Google Scholar 

  • Sen SK, Jana A, Bandyopadhyay P, Mohapatra PKD, Raut S (2016) Thermostable amylase production from hot spring isolate Exiguobacterium sp: a promising agent for natural detergents. Sustain Chem Pharm 3:59–68

    Article  CAS  Google Scholar 

  • Setyorini E, Takenaka S, Murakami S, Aoki K (2006) Purification and characterization of two novel halotolerant extracellular proteases from Bacillus subtilis strain FP-133. Biosci Biotechnol Biochem 70(2):433–440

    Article  CAS  Google Scholar 

  • Ševčík J, Solovicová A, Hostinová E, Gašperík J, Wilson KS, Dauter Z (1998) Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 Å resolution. Acta Crystallogr Sect D 54(5):854–866

    Google Scholar 

  • Shivlata L, Satyanarayana T (2017) Characteristics of raw starch-digesting α-amylase of Streptomyces badius DB-1 with transglycosylation activity and its applications. Appl Biochem Biotechnol 181(4):1283–1303

    Article  CAS  Google Scholar 

  • Sidkey NM, Abo-Shadi MA, Balahmar R, Sabry R, Badrany G (2011) Purification and characterization of α-amylase from a newly isolated Aspergillus flavus F2Mbb. Int Res J Microbiol 2(3):096–103

    Google Scholar 

  • Singh R, Kumar V, Kapoor V (2014) Partial purification and characterization of a heat stable α-amylase from a thermophilic actinobacteria, Streptomyces sp. MSC702. Enzyme Res

    Google Scholar 

  • Smitha RB, Sajith S, Priji P, Unni KNN, Roy TAN, Benjamin S (2015) Purification and characterization of amylase from Bacillus thuringiensis subsp. kurstaki. Bt Res 6

    Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19(12):555–562

    Article  CAS  Google Scholar 

  • Sumrin A, Ahmad W, Ijaz B, Sarwar MT, Gull S, Kausar H, Shahid I, Jahan S, Asad S, Hussain M, Riazuddin S (2011) Purification and medium optimization of α-amylase from Bacillus subtilis 168. Afr J Biotech 10(11):2119–2129

    CAS  Google Scholar 

  • Sweedman MC, Hasjim J, Tizzotti MJ, Schäfer C, Gilbert RG (2013) Effect of octenylsuccinic anhydride modification on β-amylolysis of starch. Carbohydr Polym 97(1):9–17

    Article  CAS  Google Scholar 

  • Syed DG, Agasar D, Pandey A (2009) Production and partial purification of α-amylase from a novel isolate Streptomyces gulbargensis. J Ind Microbiol Biotechnol 36(2):189–194

    Article  CAS  Google Scholar 

  • Tesfaw A, Assefa F (2014) Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int Sch Res Not

    Google Scholar 

  • Thompson DB (2000) On the non-random nature of amylopectin branching. Carbohyd Polym 43(3):223–239

    Article  CAS  Google Scholar 

  • Tiwari SP, Srivastava R, Singh CS, Shukla K, Singh RK, Singh P, Singh R, Singh NL, Sharma R (2015) Amylases: an overview with special reference to alpha amylase. J Global Biosci 4:1886–1901

    Google Scholar 

  • Totsuka A, Fukazawa C (1996) Functional analysis of Glu380 and Leu383 of soybean β-amylase: a proposed action mechanism. Eur J Biochem 240(3):655–659

    Article  CAS  Google Scholar 

  • Vaidya S, Srivastava PK, Rathore P, Pandey AK (2015) Amylases: a prospective enzyme in the field of biotechnology. J Appl Biosci 41(1):1–18

    Google Scholar 

  • Van Der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  Google Scholar 

  • Varalakshmi KN, Kumudini BS, Nandini BN, Solomon J, Suhas R, Mahesh B, Pavitha AP (2009) Production and characterization of α-amylase from Aspergillus niger JGI24 isolated in Banglore. Polish J Microbiol 58(1):29–36

    CAS  Google Scholar 

  • Vengadaramana A (2013) Industrial important microbial alpha-amylase on starch-converting process. Scholars Acad J Pharm 2(3):209–221

    Google Scholar 

  • Weemaes C, De Cordt S, Goossens K, Ludikhuyze L, Hendrickx M, Heremans K, Tobback P (1996) High pressure, thermal and combined pressure–temperature stabilities of α-amylases from Bacillus species. Biotechnol Bioeng 50(1):49–56

    Article  CAS  Google Scholar 

  • Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16(4):181–188

    Article  CAS  Google Scholar 

  • Wu X, Wang Y, Tong B, Chen X, Chen J (2018) Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 109:329–337

    Article  CAS  Google Scholar 

  • Xian L, Wang F, Luo X, Feng YL, Feng JX (2015) Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS ONE 10(3):e0121531

    Article  Google Scholar 

  • Yassien MAM, Asfour HZ (2012) Improved production, purification and some properties of α-amylase from Streptomyces clavifer. Afr J Biotech 11(80):14603–14611

    Google Scholar 

  • Yu HY, Li X (2014) Characterization of an organic solvent‐tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK 71 and its application in raw starch hydrolysis for bioethanol production. Biotechnol progress 30(6):1262–1268

    Google Scholar 

  • Zhang F, Yang X, Geng L, Zhang Z, Yin Y, Li W (2016) Purification and characterization of a novel and versatile α‐amylase from thermophilic Anoxybacillus sp. YIM 342. Starch 68(5–6):446–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiburaj Sugathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, D., Kumar, S.S., Sugathan, S. (2019). Amylases for Food Applications—Updated Information. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_11

Download citation

Publish with us

Policies and ethics