Skip to main content

LES and DNS of Multiphase Flows in Industrial Devices: Application of High-Performance Computing

  • Chapter
  • First Online:
Two-Phase Flow for Automotive and Power Generation Sectors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

High fidelity solutions of turbulent flow equations are obtained by large eddy simulation (LES) and direct numerical simulation (DNS). These techniques are devoted for resolving most of the energy-carrying scales in a turbulent flow. Grid resolution in LES or DNS is determined by the lengths of the finest scale of motion which is to be directly simulated. In multiphase flows, further refinement in the grid topology is required to capture the bubble or droplet front and also to resolve the small structures that are created in the wake zone of the bubble/droplet. Owing to the grid size and finer timescales, the computational complexities in LES or DNS are extremely high, and parallel computing resources are often deployed. The present chapter reviews computational efforts involved in turbulent multiphase flow simulation in industrial devices. Several high-performance computing (HPC) strategies like distributed computing using message passing interface (MPI), general purpose graphics processing unit (GPGPU) accelerated computing using CUDA and their hybridizations are also reviewed. Estimations of the computational requirement for simulation of large industrial devices are presented, and potential use of modern computational science and hardware are critically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( C_{s}^{2} \) :

Smagorinsky constant

f i :

ith component of body force

k :

Turbulent kinetic energy

p :

Pressure

Re :

Reynolds number

S ij :

Large-scale strain rate tensor

t :

Time

u i :

ith component of velocity

x i :

ith coordinate

y + :

Wall coordinate

σ ij :

Viscous stress term

\( \tau_{ij}^{t} \) :

Sub-grid stress tensor

ε :

Turbulent dissipation rate

η :

Kolmogorov length scale

\( \nu_{t} \) :

Sub-grid eddy viscosity

DNS:

Direct numerical simulation

GPGPU:

General purpose graphics processing unit

IBM:

Immersed boundary method

LBM:

Lattice Boltzman methods

LES:

Large eddy simulation

MPI:

Message passing interface

MRF:

Multiple reference frame

OpenMP:

Open multiprocessing

PBM:

Population balance model

PCI:

Peripheral component interconnect

RANS:

Reynolds-averaged Navier–Stokes

VOF:

Volume of fluids

References

  • Agrawal S, Kumar M, Roy S (2015) Demonstration of GPGPU-Accelerated Computational Fluid Dynamic Calculations. In: Intelligent Computing and Applications, pp 519–525. Springer, New Delhi

    Google Scholar 

  • Alvarez X, Gorobets A, Trias FX, Borrell R, Oyarzun G (2018) HPC2—a fully-portable, algebra-based framework for heterogeneous computing. Application to CFD. Comput Fluids

    Google Scholar 

  • Anzt H, Gates M, Dongarra J, Kreutzer M, Wellein G, Köhler M (2017) Preconditioned Krylov solvers on GPUs. Parallel Comput 68:32–44

    Google Scholar 

  • Appleyard J, Drikakis D (2011) Higher-order CFD and interface tracking methods on highly-parallel MPI and GPU systems. Comput Fluids 46(1):101–105

    Article  MathSciNet  Google Scholar 

  • Arienti M, Oefelein J, Doisneau F (2016) Modeling primary atomization of liquid fuels using a multiphase DNS/LES approach (No SAND2016–7913R). Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    Google Scholar 

  • Ashraf MU, Eassa FA, Albeshri AA, Algarni A (2018) Performance and power efficient massive parallel computational model for HPC heterogeneous Exascale systems. IEEE Access 6:23095–23107

    Article  Google Scholar 

  • Balcázar N, Jofre L, Lehmkuhl O, Castro J, Rigola J (2014) A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int J Multiph Flow 64:55–72

    Article  MathSciNet  Google Scholar 

  • Balcázar N, Castro González J, Rigola Serrano J, Oliva Llena A (2017) DNS of the wall effect on the motion of bubble swarms. In: Procedia computer science, volume 108. International conference on computational science, ICCS, 12–14 June 2017, Zurich, Switzerland, pp 2008–2017. Elsevier

    Google Scholar 

  • Barker D (2013) Development of a scalable real-time Lagrangian particle tracking system for volumetric flow field characterization. Doctoral dissertation, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Bauerheim M, Jaravel T, Esclapez L, Riber E, Gicquel LYM, Cuenot B … Rullaud M (2015) Multiphase flow les study of the fuel split effects on combustion instabilities in an ultra low-nox annular combustor. In ASME turbo expo 2015: turbine technical conference and exposition. American Society of Mechanical Engineers, pp V04BT04A069-V04BT04A069

    Google Scholar 

  • Behafarid F, Shaver D, Bolotnov IA, Antal SP, Jansen KE, Podowski MZ (2013) Coupled DNS/RANS simulation of fission gas discharge during loss-of-flow accident in generation IV sodium fast reactor. Nucl Technol 181(1):44–55

    Article  Google Scholar 

  • Bolotnov IA (2015) Exascale applications for nuclear reactor thermal-hydraulics: fully resolved bubbly flow in realistic reactor core fuel assembly

    Google Scholar 

  • Bonnier F, Emad N, Juvigny X (2018) Software architecture for parallel particle tracking with the distribution of large amount of data. In: Proceedings of the high performance computing symposium. Society for Computer Simulation International, p 12

    Google Scholar 

  • Brower R, Christ N, DeTar C, Edwards R, Mackenzie P (2018) Lattice QCD application development within the US DOE Exascale computing project. In: EPJ web of conferences, vol 175. EDP Sciences, p 09010

    Google Scholar 

  • Bunner B, Tryggvason G (1999) Direct numerical simulations of three-dimensional bubbly flows. Phys Fluids 11(8):1967–1969

    Article  Google Scholar 

  • Capecelatro J, Desjardins O, Fox RO (2016) Effect of domain size on fluid–particle statistics in homogeneous, gravity-driven, cluster-induced turbulence. J Fluids Eng 138(4):041301

    Article  Google Scholar 

  • Cela JM, Navaux PO, Coutinho AL, Mayo-García R (2016) Fostering collaboration in energy research and technological developments applying new Exascale HPC techniques. In: 2016 16th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid). IEEE, pp 701–706

    Google Scholar 

  • Chang CS, Greenwald M, Riley K, Antypas K, Coffey R, Dart E, et al (2017) Fusion energy sciences Exascale requirements review. An office of science review sponsored jointly by advanced scientific computing research and fusion energy sciences, 27–29 Jan 2016, Gaithersburg, Maryland. USDOE Office of Science (SC), Washington, DC (United States). Offices of Advanced Scientific Computing Research and Fusion Energy Sciences

    Google Scholar 

  • Christen M, Schenk O, Burkhart H (2007) General-purpose sparse matrix building blocks using the NVIDIA CUDA technology platform. In: First workshop on general purpose processing on graphics processing units, p 32

    Google Scholar 

  • Chu KW, Wang B, Yu AB, Vince A (2009) CFD-DEM modelling of multiphase flow in dense medium cyclones. Powder Technol 193(3):235–247

    Article  Google Scholar 

  • Cleary PW, Thomas D, Bolger M, Hetherton L, Rucinski C, Watkins D (2015) Using workspace to automate workflow processes for modelling and simulation in engineering. In: MODSIM2015, 21st international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand, Gold Coast, pp 669–675

    Google Scholar 

  • Cleary PW, Hilton JE, Sinnott MD (2017) Modelling of industrial particle and multiphase flows. Powder Technol 314:232–252

    Article  Google Scholar 

  • Cohen J, Molemaker MJ (2009) A fast double precision CFD code using CUDA. Parallel Comput Fluid Dyn Recent Adv Future Dir, pp 414–429

    Google Scholar 

  • Corrigan A, Camelli F, Löhner R, Mut F (2012) Semi-automatic porting of a large-scale Fortran CFD code to GPUs. Int J Numer Meth Fluids 69(2):314–331

    Article  Google Scholar 

  • Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28(1):11–43

    Article  MathSciNet  Google Scholar 

  • de Queiróz Lamas W, Bargos FF, Giacaglia GEO, Grandinetti FJ, de Moura L (2017) Numerical modelling and simulation of multiphase flow through an industrial discharge chute. Appl Therm Eng 125:937–950

    Article  Google Scholar 

  • de Souza TC, Bastiaans RJM, De Goey LPH, Geurts BJ (2017) Modulation of a methane Bunsen flame by upstream perturbations. J Turbul 18(4):316–337

    Article  MathSciNet  Google Scholar 

  • de Wiart CC, Hillewaert K (2015) Development and validation of a massively parallel high-order solver for DNS and LES of industrial flows. In: IDIHOM: industrialization of high-order methods-a top-down approach, pp 251–292. Springer, Cham

    Google Scholar 

  • Du P, Weber R, Luszczek P, Tomov S, Peterson G, Dongarra J (2012) From CUDA to OpenCL: towards a performance-portable solution for multi-platform GPU programming. Parallel Comput 38(8):391–407

    Article  Google Scholar 

  • Dubois M, Scheurich C, Briggs F (1986) Memory access buffering in multiprocessors. In: ACM SIGARCH computer architecture news, vol 14(2). IEEE Computer Society Press, pp 434–442

    Google Scholar 

  • Dyson J (2018) GPU accelerated linear system solvers for OpenFOAM and their application to sprays. Doctoral dissertation, Brunel University London

    Google Scholar 

  • Einberg G, Hagström K, Mustakallio P, Koskela H, Holmberg S (2005) CFD modelling of an industrial air diffuser—predicting velocity and temperature in the near zone. Build Environ 40(5):601–615

    Article  Google Scholar 

  • Flynn MJ (1972) Some computer organizations and their effectiveness. IEEE Trans Comput C–21(9):948–960. https://doi.org/10.1109/tc.1972.5009071

  • Fox RO (2012) Large-eddy-simulation tools for multiphase flows. Annu Rev Fluid Mech 44:47–76

    Article  MathSciNet  Google Scholar 

  • Fox RO, Varma A (2003) Computational models for turbulent reacting flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Fu Z, Yakovlev S, Kirby RM, Whitaker RT (2015) Fast parallel solver for the level set equations on unstructured meshes. Concurrency Comput: Pract Exp 27(7):1639–1657

    Article  Google Scholar 

  • Fukushima N, Katayama M, Naka Y, Oobayashi T, Shimura M, Nada Y, et al (2015) Combustion regime classification of HCCI/PCCI combustion using Lagrangian fluid particle tracking. Proc Combust Inst 35(3):3009–3017

    Google Scholar 

  • Galbiati C, Tonini S, Weigand B, Cossali G (2016) Direct numerical simulation of primary break-up in swirling liquid jet. In: 9th international conference on multiphase flow (ICMF 2016). AIDIC

    Google Scholar 

  • Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, Morton S, et al (2008) Parallel computing experiences with CUDA. IEEE Micro (4):13–27

    Google Scholar 

  • Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. Springer Science & Business Media

    Google Scholar 

  • Gentric C, Mignon D, Bousquet J, Tanguy PA (2005) Comparison of mixing in two industrial gas–liquid reactors using CFD simulations. Chem Eng Sci 60(8–9):2253–2272

    Article  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  Google Scholar 

  • Gibou F, Hyde D, Fedkiw R (2018) Sharp interface approaches and deep learning techniques for multiphase flows. J Comput Phys

    Google Scholar 

  • Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message-passing interface, 2nd edn. The MIT Press

    Google Scholar 

  • Gutiérrez E, Favre F, Balcázar N, Amani A, Rigola J (2018) Numerical approach to study bubbles and drops evolving through complex geometries by using a level set–moving mesh–immersed boundary method. Chem Eng J 349:662–682

    Article  Google Scholar 

  • Ham F, Apte S, Iaccarino G, Wu X, Herrmann M (2003) Unstructured LES of reacting multiphase flows in realistic gas turbine combustors. Minnesota Univ Minneapolis

    Google Scholar 

  • Hartmann H, Derksen JJ, Van den Akker HEA (2006) Numerical simulation of a dissolution process in a stirred tank reactor. Chem Eng Sci 61(9):3025–3032

    Article  Google Scholar 

  • Herrmann M (2003) A domain decomposition parallelization of the fast marching method. German Research Foundation (DFG) Bonn (Germany)

    Google Scholar 

  • Herrmann M (2008) A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J Comput Phys 227(4):2674–2706

    Article  MathSciNet  Google Scholar 

  • Huang TC, Chang CY, Lin CA (2018) Simulation of droplet dynamic with high density ratio two-phase lattice Boltzmann model on multi-GPU cluster. Comput Fluids

    Google Scholar 

  • Jespersen DC (2010) Acceleration of a CFD code with a GPU. Sci Program 18(3–4):193–201

    Google Scholar 

  • Juric D, Chergui J, Shin S, Kahouadji L, Craster RV, Matar OK (2017) Innovative computing for industrially-relevant multiphase flows

    Google Scholar 

  • Karypis G, Kumar V (1998) METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices

    Google Scholar 

  • Kataoka I (1986) Local instant formulation of two-phase flow. Int J Multiph Flow 12(5):745–758

    Article  Google Scholar 

  • Keller A, Arndt RA (2000) Cavitation scale effects—a presentation of its visual appearance and empirically found relations. In: Proceedings of NCTC50 international conference on propeller cavitation, April 2000, Newcastle upon Tyne

    Google Scholar 

  • Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. In: Dokl. Akad. Nauk SSSR, vol 32(1), pp 16–18

    Google Scholar 

  • Krishnan A, Mesnard O, Barba LA (2017) cuIBM: a GPU-based immersed boundary method code. J Open Source Softw 2:15

    Article  Google Scholar 

  • Kulkarni D, Tang X, Ahuja S, Dischler R, Mahajan R (2018) Experimental study of two-phase cooling to enable large-scale system computing performance. In: 2018 17th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 596–601

    Google Scholar 

  • Kumar N, Sringarpure M, Banerjee T, Hackl J, Balachandar S, Lam H … Ranka S (2015) CMT-bone: a mini-app for compressible multiphase turbulence simulation software. In: 2015 IEEE international conference on cluster computing (Cluster). IEEE, pp 785–792

    Google Scholar 

  • Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulation using GPU computing processor. Comput Math Appl 59(7):2380–2392

    Article  Google Scholar 

  • Labourasse E, Lacanette D, Toutant A, Lubin P, Vincent S, Lebaigue O, … Sagaut P (2007) Towards large eddy simulation of isothermal two-phase flows: governing equations and a priori tests. Int J Multiph flow 33(1):1–39

    Google Scholar 

  • Lahey RT Jr (2005) The simulation of multidimensional multiphase flows. Nucl Eng Des 235(10–12):1043–1060

    Article  Google Scholar 

  • Lakehal D, Meier M, Fulgosi M (2002) Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int J Heat Fluid Flow 23(3):242–257

    Article  Google Scholar 

  • Lebas R, Menard T, Beau PA, Berlemont A, Demoulin FX (2009) Numerical simulation of primary break-up and atomization: DNS and modelling study. Int J Multiph Flow 35(3):247–260

    Article  Google Scholar 

  • Ma M, Lu J, Tryggvason G (2016) Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels. Int J Multiph Flow 85:336–347

    Article  MathSciNet  Google Scholar 

  • Mahesh K, Constantinescu G, Apte S, Iaccarino G, Ham F, Moin P (2006) Large-eddy simulation of reacting turbulent flows in complex geometries. J Appl Mech 73(3):374–381

    Article  Google Scholar 

  • Maruthi NH, Ranjan R, Narasimha R, Deshpande SM, Sharma B, Nanditale SRT (2017) GPU acceleration of a DNS code for gas turbine blade simulations. In: Computational science symposium, IISc, Bangalore

    Google Scholar 

  • Mayank K, Banerjee R, Mangadoddy N (2017) Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone

    Google Scholar 

  • Messina P (2017) The exascale computing project. Comput Sci Eng 19(3):63–67

    Article  Google Scholar 

  • Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  • Nvidia CUDA (2011) Nvidia cuda c programming guide. Nvidia Corporation 120(18):8

    Google Scholar 

  • Nvidia T (2016) P100 white paper. NVIDIA Corporation

    Google Scholar 

  • NVIDIA Launches the World’s First Graphics Processing Unit: GeForce 256. Nvidia. 31 August 1999. Archived

    Google Scholar 

  • Olenik G, Stein OT, Kronenburg A (2015) LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1. Proc Combust Inst 35(3):2819–2828

    Google Scholar 

  • Onodera N, Aoki T, Shimokawabe T, Kobayashi H (2013) Large-scale LES wind simulation using lattice Boltzmann method for a 10 km × 10 km area in metropolitan Tokyo. TSUBAME e-Sci J Global Sci Inf Comput Center 9:1–8

    Google Scholar 

  • Otten M, Gong J, Mametjanov A, Vose A, Levesque J, Fischer P, Min M (2016) An MPI/OpenACC implementation of a high-order electromagnetics solver with GPU direct communication. Int J High Perform Comput Appl 30(3):320–334

    Article  Google Scholar 

  • Pangarkar VG (2014) Design of multiphase reactors. Wiley

    Google Scholar 

  • Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Ortí ES, Duato J (2014) A complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput 40(10):574–588

    Article  Google Scholar 

  • Pérez FEH, Mukhadiyev N, Xu X, Sow A, Lee B J, Sankaran R, Im HG (2018) Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Comput Fluids

    Google Scholar 

  • Picano F, Breugem WP, Brandt L (2015) Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J Fluid Mech 764:463–487

    Google Scholar 

  • Pierce C, Moin P (2004) Progress-variable approach for large-eddy simulation of nonpremixed turbulent combustion. J Fluid Mech 504:73–97

    Article  MathSciNet  Google Scholar 

  • Pope SB (2010) Self-conditioned fields for large-eddy simulations of turbulent flows. J Fluid Mech 652:139–169

    Article  Google Scholar 

  • Prosperetti A (2015) Life and death by boundary conditions. J Fluid Mech 768:1–4

    Article  MathSciNet  Google Scholar 

  • Raynal L, Rayana FB, Royon-Lebeaud A (2009) Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale. Energy Procedia 1(1):917–924

    Article  Google Scholar 

  • Reveillon J, Péra C, Bouali Z (2011) Examples of the potential of DNS for the understanding of reactive multiphase flows. Int J Spray Combust Dyn 3(1):63–92

    Article  Google Scholar 

  • Riber E, Moureau V, García M, Poinsot T, Simonin O (2009) Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J Comput Phys 228(2):539–564

    Article  Google Scholar 

  • Rodriguez JM, Sahni O, Lahey RT Jr, Jansen KE (2013) A parallel adaptive mesh method for the numerical simulation of multiphase flows. Comput Fluids 87:115–131

    Article  MathSciNet  Google Scholar 

  • Rohdin P, Moshfegh B (2007) Numerical predictions of indoor climate in large industrial premises. A comparison between different k–ε models supported by field measurements. Build Environ 42(11):3872–3882

    Google Scholar 

  • Roy S, Acharya S (2012) Effect of impeller speed perturbation in a Rushton impeller stirred tank. J Fluids Eng 134(6):061104

    Article  Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer Science & Business Media

    Google Scholar 

  • Sbrizzai F, Lavezzo V, Verzicco R, Campolo M, Soldati A (2006) Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor. Chem Eng Sci 61(9):2843–2851

    Article  Google Scholar 

  • Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, vol 1. ICMF New Orleans

    Google Scholar 

  • Shalf J, Dosanjh S, Morrison J (2010) Exascale computing technology challenges. In: International conference on high performance computing for computational science. Springer, Berlin, Heidelberg, pp 1–25

    Google Scholar 

  • Shi J, Herø EH, Solsvik J, Jakobsen HA (2017) Experimental and numerical study on single droplet breakage in turbulent flow

    Google Scholar 

  • Shin S, Chergui J, Juric D (2017) A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows. J Mech Sci Technol 31(4):1739–1751

    Article  Google Scholar 

  • Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D (2014) CFD vision 2030 study: a path to revolutionary computational aerosciences

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Smith TM (2016) Full system scale simulations of reactor cores enabled by ExaScale computing (No. SAND2016-12354C). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    Google Scholar 

  • Ström H, Sasic S (2015) Detailed simulations of the effect of particle deformation and particle-fluid heat transfer on particle-particle interactions in liquids. Procedia Eng 102:1563–1572

    Article  Google Scholar 

  • Sun X, Sakai M (2016) Numerical simulation of two-phase flows in complex geometries by using the volume-of-fluid/immersed-boundary method. Chem Eng Sci 139:221–240

    Article  Google Scholar 

  • Sweet J, Richter DH, Thain D (2018) GPU acceleration of Eulerian-Lagrangian particle-laden turbulent flow simulations. Int J Multiph Flow 99:437–445

    Article  MathSciNet  Google Scholar 

  • Tang JC, Wang H, Bolla M, Wehrfritz A, Hawkes ER (2018) A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames. In: Proceedings of the combustion institute

    Google Scholar 

  • Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, … Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708–759

    Google Scholar 

  • Tryggvason G, Esmaeeli A, Lu J, Biswas S (2006) Direct numerical simulations of gas/liquid multiphase flows. Fluid Dyn Res 38(9):660–681

    Article  MathSciNet  Google Scholar 

  • Tryggvason G, Thomas S, Lu J, Aboulhasanzadeh B (2010) Multiscale issues in DNS of multiphase flows. Acta Math Sci 30(2):551–562

    Article  MathSciNet  Google Scholar 

  • Tryggvason G, Dabiri S, Aboulhasanzadeh B, Lu J (2013) Multiscale considerations in direct numerical simulations of multiphase flows. Phys Fluids 25(3):031302

    Article  Google Scholar 

  • Tyagi M, Roy S, Harvey Iii AD, Acharya S (2007) Simulation of laminar and turbulent impeller stirred tanks using immersed boundary method and large eddy simulation technique in multi-block curvilinear geometries. Chem Eng Sci 62(5):1351–1363

    Article  Google Scholar 

  • Ungerer T, Carpenter P (2018) Eurolab-4-HPC long-term vision on high-performance computing. arXiv preprint arXiv:1807.04521

  • Vincent S (2015) DNS of multiphase flows: energy conservation, vorticity, LES modeling and a priori filtering. In: Turbulence and interaction 2015 TI 2015

    Google Scholar 

  • Wachs A (2011) Rising of 3D catalyst particles in a natural convection dominated flow by a parallel DNS method. Comput Chem Eng 35(11):2169–2185

    Article  Google Scholar 

  • Wang HY, McDonell VG, Sowa WA, Samuelsen GS (1993) Scaling of the two-phase flow downstream of a gas turbine combustor swirl cup: part i—mean quantities. J Eng Gas Turbines Power 115(3):453–460

    Article  Google Scholar 

  • Wang X, Shangguan Y, Onodera N, Kobayashi H, Aoki T (2014) Direct numerical simulation and large eddy simulation on a turbulent wall-bounded flow using lattice Boltzmann method and multiple GPUs. Math Probl Eng

    Google Scholar 

  • Waters J, Carrington DB, Francois MM (2017) Modeling multiphase flow: spray breakup using volume of fluids in a dynamics LES FEM method. Numer Heat Transf Part B: Fundam 72(4):285–299

    Article  Google Scholar 

  • Wu JL, Xiao H, Paterson E (2018) Data-driven augmentation of turbulence models with physics-informed machine learning. arXiv preprint arXiv:1801.02762

  • Xie L, Luo ZH (2017) Multiscale computational fluid dynamics–population balance model coupled system of atom transfer radical suspension polymerization in stirred tank reactors. Ind Eng Chem Res 56(16):4690–4702

    Article  Google Scholar 

  • Xiong Q, Li B, Zhou G, Fang X, Xu J, Wang, J … Li J (2012) Large-scale DNS of gas–solid flows on Mole-8.5. Chem Eng Sci 71:422–430

    Google Scholar 

  • Yu C, Wang Y, Huang C, Wu X, Du T (2017) Large eddy simulation of unsteady cavitating flow around a highly skewed propeller in nonuniform wake. J Fluids Eng 139(4):041302

    Article  Google Scholar 

  • Zeng L, Balachandar S, Fischer P, Najjar F (2008) Interactions of a stationary finite-sized particle with wall turbulence. J Fluid Mech 594:271–305

    Article  Google Scholar 

  • Zhuang Y, Liu D, Chen X, Ma J, Xiong J, Liang C (2018) Statistic model for predicting cluster movement in circulating fluidized bed (CFB) risers. J Taiwan Inst Chem Eng

    Google Scholar 

Download references

Acknowledgements

Author acknowledges support from Mr. Apurva Raj, Research Scholar, Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, in preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, S. (2019). LES and DNS of Multiphase Flows in Industrial Devices: Application of High-Performance Computing. In: Saha, K., Kumar Agarwal, A., Ghosh, K., Som, S. (eds) Two-Phase Flow for Automotive and Power Generation Sectors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3256-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3256-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3255-5

  • Online ISBN: 978-981-13-3256-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics