Skip to main content

A Comprehensive Parametric Modelling for Mixed Convection Film Boiling Analysis on a Vertical Flat Plate

  • Chapter
  • First Online:
Two-Phase Flow for Automotive and Power Generation Sectors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 1055 Accesses

Abstract

A comparative assessment of existing instability models is carried out to find the appropriate length scale in a computationally inexpensive integral model predicting the heat transfer in film boiling over a vertical flat plate. The use of Kelvin–Helmholtz criterion shows good matching to the limited number of experimental data, whereas for high liquid flow velocity the critical film Reynolds number criterion is found as the best. A generalized model covering the range of both the models is then developed by employing a regression analysis. The generalized model is shown to remain accurate within 10% band over a wide range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( g \) :

Acceleration due to gravity

\( h_{av} \) :

Average heat transfer coefficient

\( h_{\text{conv}} \); \( \bar{h}_{\text{conv}} \):

Convective heat transfer coefficient; averaged

\( h_{fg} \) :

Latent heat of evaporation

\( j \) :

Mass flux

Ja sub :

Liquid-phase subcooling Jakob number \( = c_{pl} (T_{\text{sat}} - T_{\infty } )/h_{fg} \)

Ja sup :

Vapour-phase superheat Jakob number \( = c_{pv} (T_{w} - T_{\text{sat}} )/h_{fg} \)

\( k \) :

Thermal conductivity

\( L_{\lambda } \) :

Instability length scale

\( L_{\lambda - KH} \) :

Kelvin–Helmholtz instability length scale

\( L_{\lambda - FRN} \) :

Length scale based on film Reynolds number

\( L_{c} \) :

Characteristic length scale

\( L_{\text{reg}} \) :

Regression length

\( \bar{L}_{\text{reg}} \) :

Non-dimensional regression length

p :

Pressure

Re l :

Liquid-phase Reynolds number = (uLc)/νl

T :

Temperature

u, v:

Velocity components

x, y:

Coordinates

α :

Thermal diffusivity

β :

Coefficient of volumetric thermal expansion

δ :

Vapour film thickness

δ l :

Liquid momentum boundary layer thickness

δ t :

Liquid thermal boundary layer thickness

ε :

Emissivity

μ :

Dynamic viscosity

ν:

Kinematic viscosity

ρ :

Density

σ; σt:

Stefan–Boltzmann constant; surface tension

eq:

Equivalent

l :

Liquid

sat:

Saturation value

w :

Wall of the plate

i :

Interface

r :

Radiation

v :

Vapour

∞:

Free stream value

References

  • Arias FJ (2009) Self-induced thermocapillary convection in film boiling heat transfer from a vertical surface in saturated conditions and viscous regimen. Int J Heat Fluid Flow 30:911–915

    Article  Google Scholar 

  • Berthoud G, D’Aillon LG (2009) Film boiling heat transfer around a very high temperature thin wire immersed into water at pressure from 1 to 210 bar: Experimental results and analysis. Int J Therm Sci 48:1728–1740

    Article  Google Scholar 

  • Bromley LA (1950) Heat transfer in stable film boiling. Chem Eng Prog 46(5):221–227

    Google Scholar 

  • Bui TD, Dhir VK (1985) Film boiling heat transfer on an isothermal vertical surface. Trans ASME J Heat Trans 107:764–771

    Article  Google Scholar 

  • Cai W, Pacheco-Vega A, Sen M, Yang KT (2006) Heat transfer correlations by symbolic regression. Int J Heat Mass Trans 49:4352–4359

    Article  Google Scholar 

  • Choi SR, Evangelista JW, Avedisian CT, Tsang W (2011) Experimental study of chemical conversion of methanol and ethylene glycol in a film boiling reactor. Int J Heat Mass Trans 54:500–511

    Article  Google Scholar 

  • Das DC, Ghosh K, Sanyal D, Meignen R (2014) A novel approach for modeling mixed convection film boiling for a vertical flat plate. Numer Heat Trans A-Appl 66:1112–1130

    Article  Google Scholar 

  • Dhir VK, Purohit GP (1978) Subcooled film-boiling heat transfer from spheres. Nucl Eng Des 47(1):49–66

    Article  Google Scholar 

  • Ghosh S, Pratihar DK, Maiti B, Das PK (2013) Automatic classification of vertical counter-current two-phase flow by capturing hydrodynamic characteristics through objective descriptions. Int J Multiph Flow 52:102–120

    Article  Google Scholar 

  • Hsu YY, Westwater JW (1960) Approximate theory for film boiling on vertical surfaces. Chem Eng Prog Symp Ser 56(30):15–24

    Google Scholar 

  • Jouhara H, Axcell BP (2009) Film boiling heat transfer and vapour film collapse on spheres, cylinders and plane surfaces. Nucl Eng Des 239:1885–1900

    Article  Google Scholar 

  • Juric D, Tryggvason G (1998) Computations of boiling flows. Int J Multiphas Flow 24:387–410

    Article  Google Scholar 

  • Kim CS, Suh KY, Rempe JL, Cheung FB, Kim SB (2005) Effect of interfacial wavy motion on film boiling heat transfer from isothermal downward-facing hemispheres. Nucl Eng Des 235:2141–2154

    Article  Google Scholar 

  • Kolev NI (1998) Film boiling on vertical plates and spheres. Exp Therm Fluid Sci 18:97–115

    Article  Google Scholar 

  • Liscic B (2009) Heat transfer control during quenching. Mater Manuf Process 24:879–886

    Article  Google Scholar 

  • Makishi O, Honda H (2012) Examination of minimum-heat-flux-point condition for film boiling on a sphere in terms of the limiting liquid superheat and the critical vapor film thickness. Int J Heat Mass Trans 55:2377–2383

    Article  Google Scholar 

  • Meduri PK, Warrier GR, Dhir VK (2009) Wall heat flux partitioning during subcooled forced flow film boiling of water on a vertical surface. Int J Heat Mass Trans 52:3534–3546

    Article  Google Scholar 

  • Nishio S, Ohtake H (1993) Vapor-film-unit model and heat transfer correlation for natural-convection film boiling with wave motion under subcooled conditions. Int J Heat Mass Trans 36(10):2541–2552

    Article  Google Scholar 

  • Okkonen T (1999) Film boiling on a vertical high-temperature surface: focusing on melt jet-water interactions. Nucl Eng Des 189:273–297

    Article  Google Scholar 

  • Okkonen T, Wennerstrom H, Hedberg S, Blomstrand J, Sehgal BR, Frid W (1996) Film boiling on a long vertical surface under high heat flux and water subcooling conditions, heat transfer, Houston. AIChE Symp Ser 92(310):294–303

    Google Scholar 

  • Pettersen J (2004) Flow vaporization of CO2 in microchannel tubes. Exp Therm Fluid Sci 28:111–121

    Article  Google Scholar 

  • Shiotsu M, Hama K (2000) Film boiling heat transfer from a vertical cylinder in forced flow of liquids under saturated and subcooled conditions at pressures. Nucl Eng Des 200:23–38

    Article  Google Scholar 

  • Vijaykumar R, Dhir VK (1992) An experimental study of subcooled film boiling on a vertical surface—hydrodynamic aspects. Trans ASME J Heat Trans 114:161–168

    Article  Google Scholar 

  • Yeh C, Chen C, Chen Y (2009) Heat transfer analysis of a loop heat pipe with biporous wicks. Int J Heat Mass Trans 52:4426–4434

    Article  Google Scholar 

  • Yun R, Kim R, Kim MS (2005) Flow boiling heat transfer of carbon dioxide in horizontal mini tubes. Int J Heat Fluid Flow 26:801–809

    Article  Google Scholar 

  • Zumbrunnen D, Viskanta AR, Incropera FP (1989) The effect of surface motion on forced convection film boiling heat transfer. Trans ASME J Heat Trans 111:760–766

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided for this work by CSIR, India, and BARC, Mumbai, India, is gratefully acknowledged. The authors express their gratitude towards Deb Mukhopadhyay, RSD, BARC, Mumbai, India, for his encouragement and support in film boiling research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D.C., Ghosh, K., Sanyal, D. (2019). A Comprehensive Parametric Modelling for Mixed Convection Film Boiling Analysis on a Vertical Flat Plate. In: Saha, K., Kumar Agarwal, A., Ghosh, K., Som, S. (eds) Two-Phase Flow for Automotive and Power Generation Sectors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3256-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3256-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3255-5

  • Online ISBN: 978-981-13-3256-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics