Skip to main content

System-Level Modelling of MEMS Vibrating-Reed Electrometer in Matlab Simulink

  • Chapter
  • First Online:
Micro and Nano Machined Electrometers
  • 537 Accesses

Abstract

Micromachined mechanical variable capacitor is a key component of many microelectromechanical systems (MEMS) devices, such as pressure sensor, accelerometer, gyroscope, electrometer, etc. Optimization of these devices require a systematic consideration of parameter design in both mechanical and electrical domains. This chapter introduces the system-level modelling of a variable capacitor-based MEMS electrometry system. To simultaneously simulate the mechanical and electrical components, Matlab Simulink was adopted as the simulation environment to build the system model. Four main modelling blocks were developed to model the entire system, including electrostatic force generator, equivalent circuit representation of spring-mass-damper mechanical system, time-dependent variable capacitor controlled by in-line equation, and integration of variable capacitor into the actual detection circuitry. The whole electrometry system was successfully simulated in Simulink, and the detailed simulation results are shown in this chapter, such as the waveforms of driving force, shuttle displacement, time-varying capacitance and charge induced output voltage. The simulated results agreed well with the experimental results, for example, the simulated charge sensitivity is 7.2 × 107 V/C, which is close to the experimental results of 9.5 × 107 V/C with the same design parameters. Using this technique, any variable capacitor-based MEMS sensors can be modelled in Simulink by simply changing the mathematical calculation blocks to implement the in-line equation for the time-dependent capacitance. Therefore, this technique provides a useful tool that allows a fully combined simulation of both mechanical and electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Angell, S.C. Terry, P.W. Barth, Silicon micromechanical devices. Sci. Am. 248(4), 44–55 (1983)

    Article  Google Scholar 

  2. Y. Zhu, A. Bazaei, S.O.R. Moheimani, M.R. Yuce, A micromachined nanopositioner with on-chip electrothermal actuation and sensing. IEEE Electron Device Lett. 31(10), 1161–1163 (2010)

    Article  Google Scholar 

  3. T. Veijola, H. Kuisma, J. Lahdenpera, T. Ryhanen, Equivalent circuit model of the squeezed gas film in a silicon accelerometer. Sens. Actuator A 48, 239–248 (1995)

    Article  Google Scholar 

  4. L.F. Che, B. Xiong, Y.L. Wang, System modeling of a vibratory micromachined gyroscope with bar structure. J. Micromech. Microeng. 13, 65–71 (2003)

    Article  Google Scholar 

  5. C. Basso, SPICE analog behavioral modeling of variable passives. Power Electron. Technol. 58 (2005)

    Google Scholar 

  6. Y. Zhu, J. Lee, A. Seshia, System-level simulation of a micromachined electrometer using a time-domain variable capacitor circuit model. J. Micromech. Microeng. 17(5), 1059–1065 (2007)

    Article  Google Scholar 

  7. Y. Zhu, J. Lee, A. Seshia, MEMS electrometer system simulation using a time-domain variable capacitor model, in TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, 2007, pp. 1685–1688

    Google Scholar 

  8. H. Zhu, J. Lee, Simulating nonlinearity in MEMS resonators by a charge controlled capacitor. Procedia Eng. 25, 403–406 (2011)

    Article  Google Scholar 

  9. H. Zhu, J. Lee, System-level circuit simulation of nonlinearity in micromechanical resonators. Sens. Actuator A Phys. 186, 15–20 (2012)

    Article  Google Scholar 

  10. H. Paleosky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometers. Rev. Sci. Instrum. 18(5), 298–314 (1947)

    Article  Google Scholar 

  11. T.R. Ireland, N. Schram, P. Holden, P. Lanc, J. Vila, R. Armstrong, Y. Amelin, A. Latimore, D. Corrigan, S. Clement, J.J. Foster, W. Compston, Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. Int. J. Mass Spectrom. 359, 26–37 (2014)

    Article  Google Scholar 

  12. J. Jalil, Y. Zhu, C. Ekanayake, Y. Ruan, Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28(14), 142002 (2017)

    Article  Google Scholar 

  13. G. Zimmerli, T.M. Giles, R.L. Kautz, J.M. Martinis, Noise in the Coulomb blockade electrometer. Appl. Phys. Lett. 61, 237–239 (1992)

    Article  Google Scholar 

  14. A.N. Cleland, M.L. Roukes, A nanometer-scale mechanical electrometer. Nature 392, 160–162 (1998)

    Article  Google Scholar 

  15. H. Kroemmer, A. Erbe, A. Tilke, S. Manus, R.H. Blick, Nanomechanical resonators operating as charge detectors in the nonlinear regime. Europhys. Lett. 50, 101–106 (2000)

    Article  Google Scholar 

  16. Keysight B2980A Series Femto/Picoammeter Electrometer/High Resistance Meter, Keysight Technologies [Online]. Available: https://literature.cdn.keysight.com/litweb/pdf/5991-4878EN.pdf?id=2500920. Accessed 28 Sept 2018

  17. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280(5367), 1238–1242 (1998)

    Article  Google Scholar 

  18. I. Ahmed, J.A. Haigh, S. Schaal, S. Barraud, Y. Zhu, C.M. Lee, M. Amado, J.W.A. Robinson, A. Rossi, J.J.L. Morton, M.F. Gonzalez-Zalba, Radio-frequency capacitive gate-based sensing. Phys. Rev. Appl. 10(1), 014018 (2018)

    Article  Google Scholar 

  19. J. Jalil, Y. Ruan, H.Z. Li, Y. Zhu, Comprehensive design considerations and noise modeling of preamplifier for MEMS electrometry. IEEE Trans. Instrum. Meas. (2019). https://doi.org/10.1109/tim.2019.2930440

  20. H. Palevsky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometers. Rev. Sci. Instrum. 18, 298–314 (1947)

    Article  Google Scholar 

  21. P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, J.A. Yasaitis, Electrostatic charge and field sensors based on micromechanical resonators. J. Microelectromech. Syst. 12(5), 577–589 (2003)

    Article  Google Scholar 

  22. J. Jalil, Y. Ruan, Y. Zhu, Room-temperature sensing of single electrons using vibrating-reed electrometer in silicon-on-glass technology. IEEE Electron Device Lett. 39(12), 1928–1931 (2018)

    Article  Google Scholar 

  23. G. Jaramillo, C. Buffa, M. Li, F.J. Brechtel, G. Langfelder, D.A. Horsley, MEMS electrometer with femtoampere resolution for aerosol particulate measurements. IEEE Sens. J. 13(8), 2993–3000 (2013)

    Article  Google Scholar 

  24. J.E. Lee, Y. Zhu, A.A. Seshia, A micromechanical electrometer approaching single-electron charge resolution at room temperature, in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Wuhan, 2008, pp. 948–951

    Google Scholar 

  25. P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, High-resolution electrometer with micromechanical variable capacitor, in Solid-State Sensor, Actuator and Microsystem Workshop (South Carolina) (2002), pp. 305–308

    Google Scholar 

  26. J. Lee, Y. Zhu, A. Seshia, Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18(2), 025033 (2008)

    Article  Google Scholar 

  27. Y. Zhu, J.E.Y. Lee, A.A. Seshia, A resonant micromachined electrostatic sensor. IEEE Sens. J. 8(9), 1499–1505 (2008)

    Article  Google Scholar 

  28. J. Jalil, Y. Zhu, T. Dinh, Y. Ruan, Development of a vibrating-reed MEMS charge sensor on silicon-on-glass technology, in Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, 2018, pp. 126–136

    Google Scholar 

  29. J. Lee, Y. Zhu, A. Seshia, Sub-10e charge resolution for room temperature electrometry, in SENSORS, 2007 IEEE, Atlanta, GA, 2007, pp. 821–824

    Google Scholar 

  30. J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuator A Phys. 148(2), 395–400 (2008)

    Article  Google Scholar 

  31. D. Chen, J. Zhao, Y. Wang, Z. Xu, J. Xie, An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27(6), 065002 (2017)

    Article  Google Scholar 

  32. H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromech. Syst. 25(5), 937–946 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Kuang, Y. (2020). System-Level Modelling of MEMS Vibrating-Reed Electrometer in Matlab Simulink. In: Zhu, Y. (eds) Micro and Nano Machined Electrometers. Springer, Singapore. https://doi.org/10.1007/978-981-13-3247-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3247-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3246-3

  • Online ISBN: 978-981-13-3247-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics