Skip to main content

Micromachined Resonator-Based Charge and Electric Field Sensors: A Review

  • Chapter
  • First Online:
Micro and Nano Machined Electrometers

Abstract

An electrometer is a sensor to measure electric charge. Electrometers are needed in various applications, ranging from the detection of ionization charges in nuclear physics, counting ions in mass spectroscopy, and space exploration, among others. Most electrometers measure the charge indirectly. For instance, solid-state electrometers measure the electric potential that is generated by an induced charge across the electrodes of a known capacitance. Devices such as gold-leaf electrometer, on the other hand, measure the columbic force between charges. Yet some other electrometers utilize a continuously varying capacitor to convert input charge to an AC current which is often easier to measure. Solid-state and vacuum-tube based electrometers have been developed as miniaturized, low-cost alternatives to traditional systems. These devices, however, suffer from drift, low-frequency noise, and leakage. Micromachined electrometers have been developed to address such short comings. Resonant sensing is often employed due to the need for resolving rather small forces from input charges. In this chapter, we will look at two main approaches for the design of micromachined electrometers, where the input charge affects the response of either a single micro-resonator or the combined response of coupled micro-resonators. We also discuss some micromachined devices for the measurement of electric field, as such devices in many applications can be utilized as electrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.I. Calle, J.G. Mantovani, C.R. Buhler, E.E. Groop, M.G. Buehler, A.W. Nowicki, Embedded electrostatic sensors for Mars exploration missions. J. Electrostat. 61(3–4), 245–257 (2004)

    Article  Google Scholar 

  2. R. Heer, C. Eder, J. Smoliner, E. Gornik, Floating electrometer for scanning tunneling microscope applications in the femtoampere range. Rev. Sci. Instrum. 68(12), 4488–4491 (1997)

    Article  Google Scholar 

  3. S. Taylor, R.F. Tindall, R.R.A. Syms, Silicon based quadrupole mass spectrometry using microelectromechanical systems. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 19(2), 557–562 (2001)

    Article  Google Scholar 

  4. F. Ruggeri et al., Single-molecule electrometry. Nat. Nanotechnol. 12(5), 488–495 (2017)

    Article  Google Scholar 

  5. F. Krueger, J. Larson, Chipmunk IV: development of and experience with a new generation of radiation area monitors for accelerator applications. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 495(1), 20–28 (2002)

    Google Scholar 

  6. G. Jaramillo, M. Li, C. Buffa, F.J. Brechtel, D.A. Horsley, Charged particle detection using a micromechanical electrometer, in Technical Digest—Solid-State Sensors, Actuators, and Microsystems Workshop (2012), pp. 295–298

    Google Scholar 

  7. G. Jaramillo, C. Buffa, M. Li, F.J. Brechtel, G. Langfelder, D.A. Horsley, MEMS electrometer with femtoampere resolution for aerosol particulate measurements. IEEE Sens. J. 13(8), 2993–3000 (2013)

    Article  Google Scholar 

  8. J. Jalil, Y. Zhu, C. Ekanayake, Y. Ruan, Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28(14) (2017). Institute of Physics Publishing

    Google Scholar 

  9. N. Clement, H. Inokawa, Foundry metal-oxide-semiconductor field-effect-transistor electrometer for single-electron detection. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 44(7A), 4855–4858 (2005)

    Article  Google Scholar 

  10. Low Level Measurements Handbook, 7th ed. (Keithley, 2013)

    Google Scholar 

  11. R. Pallás-Areny, J.G. Webster, Sensors and Signal Conditioning (Wiley, 2001)

    Google Scholar 

  12. K. Nishiguchi, Y. Ono, A. Fujiwara, Single-electron thermal noise. Nanotechnology 25(27) (2014)

    Article  Google Scholar 

  13. BP International and Institution of Chemical Engineers (Great Britain), Hazards of Electricity and Static Electricity (Institution of Chemical Engineers, 2006)

    Google Scholar 

  14. G.H. Vaillancourt, J.P. Bellerive, M. St-Jean, C. Jean, New live line tester for porcelain suspension insulators on high-voltage power lines. IEEE Trans. Power Deliv. 9(1), 208–219 (1994)

    Article  Google Scholar 

  15. G.H. Vaillancourt, S. Carignan, C. Jean, Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method. IEEE Trans. Power Deliv. 13(2), 661–666 (1998)

    Article  Google Scholar 

  16. C.A. Gerrard, J.R. Gibson, G.R. Jones, L. Holt, D. Simkin, Measurements of power system voltages using remote electric field monitoring. IEE Proc. Gener. Transm. Distrib. 145(3), 217–224 (1998)

    Article  Google Scholar 

  17. H. Kirkham, On the measurement of stationary electric fields in air, in CPEM Digest (Conference on Precision Electromagnetic Measurements) (2002), pp. 524–525

    Google Scholar 

  18. C. Peng, P. Yang, X. Guo, H. Zhang, S. Xia, Measuring atmospheric electric field using novel micromachined sensor, in NEMS 2011—6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2011), pp. 417–420

    Google Scholar 

  19. C. Peng, X. Chen, Q. Bai, L. Luo, S. Xia, A novel high performance micromechanical resonant electrostatic field sensor used in atmospheric electric field detection, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2006 (2006), pp. 698–701

    Google Scholar 

  20. C. Barthod, M. Prasad, J. Bouillot, C. Galez, M. Farzaneh, High electric field measurement and ice detection using a safe probe near power installations. Sens. Actuator A Phys. 113(2), 140–146 (2004)

    Article  Google Scholar 

  21. P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, J.A. Yasaitis, Electrostatic charge and field sensors based on micromechanical resonators. J. Microelectromech. Syst. 12(5), 577–589 (2003)

    Article  Google Scholar 

  22. N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1658 (1998)

    Article  Google Scholar 

  23. M.A. Rosa, S. Dimitrijev, H.B. Harrison, Enhanced electrostatic force generation capability of angled comb finger design used in electrostatic comb-drive actuators. Electron. Lett. 34(18), 1787–1788 (1998)

    Article  Google Scholar 

  24. D.A. Horsley, N. Wongkomet, R. Horowitz, A.P. Pisano, Precision positioning using a microfabricated electrostatic actuator. IEEE Trans. Magn. 35(2), PART 1, 993–999 (1999)

    Article  Google Scholar 

  25. R. Legtenberg, A.W. Groeneveld, M. Elwenspoek, Comb-drive actuators for large displacements. J. Micromech. Microeng. 6(3), 320–329 (1996)

    Article  Google Scholar 

  26. B. Bahreyni, Chapter 4—Modelling of statics, in Fabrication and Design of Resonant Microdevices, ed. by B. Bahreyni (William Andrew Publishing, 2009), pp. 69–78

    Google Scholar 

  27. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460(7256), 724–727 (2009)

    Article  Google Scholar 

  28. S.S. Li, Y.W. Lin, Z. Ren, C.T.C. Nguyen, An MSI micromechanical differential disk-array filter, in TRANSDUCERS and EUROSENSORS’07—4th International Conference on Solid-State Sensors, Actuators and Microsystems (2007), pp. 307–311

    Google Scholar 

  29. R. Abdolvand, B. Bahreyni, J. Lee, F. Nabki, Micromachined resonators: a review. Micromachines 7(9), 160 (2016)

    Article  Google Scholar 

  30. H. Zhang, J. Huang, W. Yuan, H. Chang, A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromech. Syst. 25(5), 937–946 (2016)

    Article  Google Scholar 

  31. J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuator A Phys. 148(2), 395–400 (2008)

    Article  Google Scholar 

  32. D. Chen, J. Zhao, Y. Wang, J. Xie, Electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2017), pp. 1208–1211

    Google Scholar 

  33. J. Zhao, H. Ding, S. Ni, L. Fu, W. Wang, J. Xie, High-resolution and large dynamic range electrometer with adjustable sensitivity based on micro resonator and electrostatic actuator, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2016, Feb 2016, pp. 1074–1077

    Google Scholar 

  34. D. Chen et al., High sensitivity micro electrometer based on clamped free curved beams resonator with weakened nonlinearity, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2018, Jan 2018, pp. 1092–1095

    Google Scholar 

  35. P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, High-resolution electrometer with micromechanical variable capacitor (2002)

    Google Scholar 

  36. G. Jaramillo, D.A. Horsley, C. Buffa, G. Langfelder, A MEMS based electrometer with a low-noise switched reset amplifier for charge measurement, in Proceedings of IEEE Sensors (2012)

    Google Scholar 

  37. J.E.Y. Lee, Y. Zhu, A.A. Seshia, A micromechanical electrometer approaching single-electron charge resolution at room temperature, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2008), pp. 948–951

    Google Scholar 

  38. J. Lee, Y. Zhu, A. Seshia, Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18(2) (2008)

    Article  Google Scholar 

  39. J. Lee, Y. Zhu, A. Seshia, Sub-10e charge resolution for room temperature electrometry, in Proceedings of IEEE Sensors (2007), pp. 821–824

    Google Scholar 

  40. A. Menzel, A.T.H. Lin, P. Estrela, P. Li, A.A. Seshia, Biomolecular and electrochemical charge detection by a micromechanical electrometer. Sens. Actuator B Chem. 160(1), 301–305 (2011)

    Article  Google Scholar 

  41. J. Lee, Y. Zhu, A.A. Seshia, A variable capacitor based MEMS electrometer, in Proceedings Eurosensors XX (2006), pp. 452–453

    Google Scholar 

  42. G.C. Underwood, A MEMS dual vertical electrometer and electric field-mill. Recommended citation. AFIT scholar theses and dissertations student graduate works (2019)

    Google Scholar 

  43. M.S. Hajhashemi, B. Bahreyni, A differential electrometer based on coupled microresonators, in Proceedings of IEEE Sensors (2012)

    Google Scholar 

  44. H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitive resonant electrometer based on mode localization of the weakly coupled resonators, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2016, Feb 2016, pp. 87–90

    Google Scholar 

  45. M.S. Hajhashemi, B. Bahreyni, Characterization of disturbances in systems of coupled micro-resonator arrays. IEEE Sens. J. 12(7), 2510–2516 (2012)

    Article  Google Scholar 

  46. J. Yang, H. Kang, H. Chang, A micro resonant electrometer with 9-electron charge resolution in room temperature, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), vol. 2018, Jan 2018, pp. 67–70

    Google Scholar 

  47. H. Kang, B. Ruan, Y. Hao, H. Chang, A micromachined electrometer with room temperature resolution of 0.256 e/√Hz. IEEE Sens. J. 1–1 (2019)

    Google Scholar 

  48. G. Wijeweera, B. Bahreyni, C. Shafai, A. Rajapakse, D. Swatek, Micromachined electric field sensor to measure AC and DC fields in power systems, in 2009 IEEE Power & Energy Society General Meeting (2009), pp. 1–1

    Google Scholar 

  49. X. Chen et al., Thermally driven micro-electrostatic fieldmeter. Sens. Actuator A Phys. 132(2), 677–682 (2006)

    Article  Google Scholar 

  50. L. Que, J.S. Park, Y.B. Gianchandani, Bent-beam electrothermal actuators—part I: single beam and cascaded devices. J. Microelectromech. Syst. 10(2), 247–254 (2001)

    Article  Google Scholar 

  51. L. Que, J.S. Park, Y.B. Gianchandani, Bent-beam electro-thermal actuators for high force applications, in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) (1999), pp. 31–36

    Google Scholar 

  52. B. Bahreyni, G. Wijeweera, C. Shafai, A. Rajapakse, Analysis and design of a micromachined electric-field sensor. J. Microelectromech. Syst. 17(1), 31–36 (2008)

    Article  Google Scholar 

  53. S. Ghionea, G. Smith, J. Pulskamp, S. Bedair, C. Meyer, D. Hull, MEMS electric-field sensor with lead zirconate titanate (PZT)-actuated electrodes, in Proceedings of IEEE Sensors (2013)

    Google Scholar 

  54. J. Huang, X. Wu, X. Wang, X. Yan, L. Lin, A novel high-sensitivity electrostatic biased electric field sensor. J. Micromech. Microeng. 25(9) (2015)

    Article  Google Scholar 

  55. T. Chen, C. Shafai, A. Rajapakse, B.Y. Park, Micromachined electric field mill employing a vertical moving shutter. Procedia Eng. 87, 452–455 (2014)

    Article  Google Scholar 

  56. P. Yang, C. Peng, H. Zhang, S. Liu, D. Fang, S. Xia, A high sensitivity SOI electric-field sensor with novel comb-shaped microelectrodes, in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11 (2011), pp. 1034–1037

    Google Scholar 

  57. T. Chen, MEM electric field sensor using force deflection with capacitance interrogation, in IEEE Power and Energy Society General Meeting (2013)

    Google Scholar 

  58. A. Roncin, C. Shafai, D.R. Swatek, Electric field sensor using electrostatic force deflection of a micro-spring supported membrane. Sens. Actuator A Phys. 123–124, 179–184 (2005)

    Article  Google Scholar 

  59. T. Chen, C. Shafai, A. Rajapakse, J.S.H. Liyanage, T.D. Neusitzer, Micromachined ac/dc electric field sensor with modulated sensitivity. Sens. Actuator A Phys. 245, 76–84 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behraad Bahreyni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esmaeili, E., Bahreyni, B. (2020). Micromachined Resonator-Based Charge and Electric Field Sensors: A Review. In: Zhu, Y. (eds) Micro and Nano Machined Electrometers. Springer, Singapore. https://doi.org/10.1007/978-981-13-3247-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3247-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3246-3

  • Online ISBN: 978-981-13-3247-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics