Skip to main content

Occurrence and Health Impacts of Emerging Contaminants in Municipal Wastewater Reuse

  • Chapter
  • First Online:
Water Conservation, Recycling and Reuse: Issues and Challenges

Abstract

Municipal wastewater reuse offers the potential to significantly increase the total available water resources. Recently, the occurrence of emerging contaminants (ECs), like pharmaceuticals and personal care products (PPCPs) and perfluorinated compounds (PFCs), in water resources is of continued concern for the public health and safety. However, the existing conventional wastewater treatment plants (WWTPs) were not originally conceived to eliminate these unidentified contaminants, which have not been monitored routinely because of the absence of stringent-specific regulation. This chapter focuses on the occurrence of these ECs and feasible opportunities for guidelines in municipal wastewater reclamation and reuse. An environmental risk assessment posed by a common means of the risk quotient shows that 27 pharmaceuticals pose high or medium risk. The concept of source control and source separation could reduce the manufacture and produce a wastewater with an optimal composition for further centralized treatment. Additional and integrated technologies for synergic treatment units are found necessary to provide high-quality recycled water and sustainable water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvaniti OS, Stasinakis AS (2015) Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 524:81–92. https://doi.org/10.1016/j.scitotenv.2015.04.023

    Article  CAS  Google Scholar 

  • Arvaniti OS, Ventouri EI, Stasinakis AS, Thomaidis NS (2012) Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid-water distribution coefficients. J Hazard Mater 239:24–31. https://doi.org/10.1016/j.jhazmat.2012.02.015

    Article  CAS  Google Scholar 

  • Becker AM, Gerstmann S, Frank H (2008) Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere 72(1):115–121. https://doi.org/10.1016/j.chemosphere.2008.01.009

    Article  CAS  Google Scholar 

  • Blaine AC, Rich CD, Sedlacko EM, Hyland KC, Stushnoff C, Dickenson ER, Higgins CP (2014) Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ Sci Technol 48(24):14361–14368. https://doi.org/10.1021/es504150h

    Article  CAS  Google Scholar 

  • Bossi R, Strand J, Sortkjaer O, Larsen MM (2008) Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. Environ Int 34(4):443–450

    Article  CAS  Google Scholar 

  • Caldwell DJ, Mastrocco F, Anderson PD, Lange R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 31(6):1396–1406

    Article  CAS  Google Scholar 

  • Campo J, Masia A, Pico Y, Farre M, Barcelo D (2014) Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants. Sci Total Environ 472:912–922. https://doi.org/10.1016/j.scitotenv.2013.11.056

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926. https://doi.org/10.1016/j.watres.2004.03.029

    Article  CAS  Google Scholar 

  • Carter KE, Farrell J (2010) Removal of perfluorooctane and perfluorobutane sulfonate from water via carbon adsorption and ion exchange. Sep Sci Technol 45(6):762–767

    Article  CAS  Google Scholar 

  • Chen X, Xia X, Wang X, Qiao J, Chen H (2011) A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere 83(10):1313–1319. https://doi.org/10.1016/j.chemosphere.2011.04.018

    Article  CAS  Google Scholar 

  • Chen H, Wang X, Zhang C, Sun R, Han J, Han G, Yang W, He X (2017a) Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea China. Environ Pollut 221:234–243. https://doi.org/10.1016/j.envpol.2016.11.070

    Article  CAS  Google Scholar 

  • Chen W, Zhang X, Zhang Y, Mamadiev M (2017b) Facile and efficient synthesis of polyacrylonitrile-based functional fibers and its sorption properties of perfluorooctane sulfonate and perfluorooctanoate. J Mol Liq 241:1013–1022. https://doi.org/10.1016/j.molliq.2017.06.090

    Article  CAS  Google Scholar 

  • Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR (2008) Sonochemical degradation of perfluorooctane sulfonate (PFOS) and Perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ Sci Technol 42(21):8057–8063

    Article  CAS  Google Scholar 

  • Chu L, Wang J, Liu Y (2015) Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation. Radiat Phys Chem 108:102–105

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807. https://doi.org/10.1016/j.watres.2005.09.015

    Article  CAS  Google Scholar 

  • Corsolini S (2009) Industrial contaminants in Antarctic biota. J Chromatogr A 1216(3):598–612. https://doi.org/10.1016/j.chroma.2008.08.012

    Article  CAS  Google Scholar 

  • De Sanctis M, Del Moro G, Chimienti S, Ritelli P, Levantesi C, Di Iaconi C (2017) Removal of pollutants and pathogens by a simplified treatment scheme for municipal wastewater reuse in agriculture. Sci Total Environ 580:17–25. https://doi.org/10.1016/j.scitotenv.2016.12.002

    Article  CAS  Google Scholar 

  • Deng S, Yu Q, Huang J, Yu G (2010) Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry. Water Res 44(18):5188–5195

    Article  CAS  Google Scholar 

  • Deng S, Zheng YQ, Xu FJ, Wang B, Huang J, Yu G (2012) Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization. Chem Eng J 193-194:154–160. https://doi.org/10.1016/j.cej.2012.04.005

    Article  CAS  Google Scholar 

  • Deng S, Niu L, Bei Y, Wang B, Huang J, Yu G (2013) Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. Chemosphere 91(2):124–130. https://doi.org/10.1016/j.chemosphere.2012.11.015

    Article  CAS  Google Scholar 

  • D’Hollander W, de Voogt P, De Coen W, Bervoets L (2010) Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol 208:179–215. https://doi.org/10.1007/978-1-4419-6880-7_4

    Article  CAS  Google Scholar 

  • Dirany A, Aaron SE, Oturan N, Sires I, Oturan MA, Aaron J (2010) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400(2):353–360

    Article  CAS  Google Scholar 

  • Feng X, Ding S, Tu J, Wu F, Deng N (2005) Degradation of estrone in aqueous solution by photo-fenton system. Sci Total Environ 345(1):229–237

    Article  CAS  Google Scholar 

  • Ferrari B, Mons R, Vollat B, Fraysse B, Paxēaus N, Giudice RL, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23(5):1344–1354

    Article  CAS  Google Scholar 

  • Fujii S, Tanaka S, Hong Lien NP, Qiu Y, Polprasert C (2007) New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper. J Water Supply Res Technol AQUA 56(5):313. https://doi.org/10.2166/aqua.2007.005

    Article  CAS  Google Scholar 

  • Garoma T, Umamaheshwar SK, Mumper A (2010) Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere 79(8):814–820

    Article  CAS  Google Scholar 

  • Ghosh GC, Okuda T, Yamashita N, Tanaka H (2009) Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation. Water Sci Technol 59(4):779–786. https://doi.org/10.2166/wst.2009.067

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342. https://doi.org/10.1021/es001834k

    Article  CAS  Google Scholar 

  • Gobel A, Thomsen A, Mcardell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39(11):3981–3989

    Article  CAS  Google Scholar 

  • Gomez MJ, Bueno MJM, Lacorte S, Fernandez-Alba AR, Aguera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66(6):993–1002. https://doi.org/10.1016/j.chemosphere.2006.07.051

    Article  CAS  Google Scholar 

  • Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeunq LWY, Richardson BJ, Lei AP, Giesy JP, Lam PKS (2008) Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 42(1–2):395–403. https://doi.org/10.1016/j.watres.2007.07.031

    Article  CAS  Google Scholar 

  • Guo R, Sim WJ, Lee ES, Lee JH, Oh JE (2010) Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Res 44(11):3476–3486. https://doi.org/10.1016/j.watres.2010.03.028

    Article  CAS  Google Scholar 

  • Hallingsorensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40(7):731–739

    Article  CAS  Google Scholar 

  • Holdgate MW (1987) Our common future: the report of the world commission on environment and development. Oxford University Press. Environ Conserv 14(03):282–282

    Article  Google Scholar 

  • Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T (2004) Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution. J Mol Catal A Chem 211(1–2):35–41. https://doi.org/10.1016/j.molcata.2003.09.029

    Article  CAS  Google Scholar 

  • Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 39(7):2383–2388. https://doi.org/10.1021/es0484754

    Article  CAS  Google Scholar 

  • Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ Sci Technol 40(3):1049–1054. https://doi.org/10.1021/es0517419

    Article  CAS  Google Scholar 

  • Huset CA, Chiaia AC, Barofsky DF, Jonkers N, Kohler HPE, Ort C, Giger W, Field JA (2008) Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland. Environ Sci Technol 42(17):6369–6377. https://doi.org/10.1021/es703062f

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022

    Article  CAS  Google Scholar 

  • Jung C, Son A, Her N, Zoh K, Cho J, Yoon Y (2015) Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review. J Ind Eng Chem 27:1–11

    Article  CAS  Google Scholar 

  • Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361(1–3):196–207. https://doi.org/10.1016/j.scitotenv.2005.06.030

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43(2):363–380. https://doi.org/10.1016/j.watres.2008.10.047

    Article  CAS  Google Scholar 

  • Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41(5):1013–1021

    Article  CAS  Google Scholar 

  • Kim I, Yamashita N, Tanaka H (2009) Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166(2):1134–1140

    Article  CAS  Google Scholar 

  • Krippner J, Falk S, Brunn H, Georgii S, Schubert S, Stahl T (2015) Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). J Agric Food Chem 63(14):3646–3653. https://doi.org/10.1021/acs.jafc.5b00012

    Article  CAS  Google Scholar 

  • Kuang J, Huang J, Wang B, Cao Q, Deng S, Yu G (2013) Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity. Water Res 47(8):2863–2872

    Article  CAS  Google Scholar 

  • Kunacheva C, Tanaka S, Fujii S, Boontanon SK, Musirat C, Wongwattana T, Shivakoti BR (2011) Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand. Chemosphere 83(6):737–744. https://doi.org/10.1016/j.chemosphere.2011.02.059

    Article  CAS  Google Scholar 

  • Kyzas GZ, Koltsakidou A, Nanaki SG, Bikiaris DN, Lambropoulou DA (2015) Removal of beta-blockers from aqueous media by adsorption onto graphene oxide. Sci Total Environ 537:411–420

    Article  CAS  Google Scholar 

  • Lammerding AM, Fazil A (2000) Hazard identification and exposure assessment for microbial food safety risk assessment. Int J Food Microbiol 58(3):147–157

    Article  CAS  Google Scholar 

  • Lee Y, Lee S, Lee D, Kim Y (2008) Risk assessment of human antibiotics in Korean aquatic environment. Environ Toxicol Pharmacol 26(2):216–221

    Article  CAS  Google Scholar 

  • Li W, Shi Y, Gao L, Liu J, Cai Y (2015) Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. J Hazard Mater 300:29–38

    Article  CAS  Google Scholar 

  • Liang X, Gondal MA, Chang X, Yamani ZH, Li N, Lu H, Ji G (2011) Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution. J Environ Sci Health A Tox Hazard Subst Environ Eng 46(13):1482–1490

    Article  CAS  Google Scholar 

  • Liebig M, Moltmann J, Knacker T (2005) Evaluation of measured and predicted environmental concentrations of selected human pharmaceuticals and personal care products (10 pp). Environ Sci Pollut Res Int 13(2):110–119. https://doi.org/10.1065/espr2005.08.276

    Article  CAS  Google Scholar 

  • Lin Y, Peng Z, Zhang X (2009) Ozonation of estrone, estradiol, diethylstilbestrol in waters. Desalination 249(1):235–240

    Article  CAS  Google Scholar 

  • Lin AYC, Panchangam SC, Ciou PS (2010) High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere 80(10):1167–1174. https://doi.org/10.1016/j.chemosphere.2010.06.018

    Article  CAS  Google Scholar 

  • Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39(11):2219–2228. https://doi.org/10.1016/j.watres.2005.04.003

    Article  CAS  Google Scholar 

  • Liu F, Zhao J, Wang S, Du P, Xing B (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48(22):13197–13206

    Article  CAS  Google Scholar 

  • Loganathan BG, Sajwan KS, Sinclair E, Kumar KS, Kannan K (2007) Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Res 41(20):4611–4620. https://doi.org/10.1016/j.watres.2007.06.045

    Article  CAS  Google Scholar 

  • Lora EES, Arrieta FP, Carpio RC, Nogueira LAH (2000) Clean production: efficiency and environment. Int. Sugar J. 102(1219):343–351

    CAS  Google Scholar 

  • Ma Y, Wang L, Liu L, Zhang X (2015) Biodegradation of tylosin residue in pharmaceutical solid waste by a novel Citrobacter amalonaticus strain. Environ Prog 34(1):99–104

    CAS  Google Scholar 

  • Mailler R, Gasperi J, Coquet Y, Deshayes S, Zedek S, Crenolive C, Cartiser N, Eudes V, Bressy A, Caupos E (2015) Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res 72:315–330

    Article  CAS  Google Scholar 

  • Meinel F, Ruhl AS, Sperlich A, Zietzschmann F, Jekel M (2014) Pilot-scale investigation of micropollutant removal with granular and powdered activated carbon. Water Air Soil Pollut 226(1):2260

    Article  CAS  Google Scholar 

  • Murakami M, Shinohara H, Takada H (2009) Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 74(4):487–493. https://doi.org/10.1016/j.chemosphere.2008.10.018

    Article  CAS  Google Scholar 

  • Ochoaherrera V, Sierraalvarez R (2008) Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72(10):1588–1593

    Article  CAS  Google Scholar 

  • Ogoshi M, Suzuki Y, Asano T (2001) Water reuse in Japan. Water Sci Technol 43(10):17–23

    Article  CAS  Google Scholar 

  • Pan YY, Shi YL, Wang JM, Cai YQ (2011) Evaluation of perfluorinated compounds in seven wastewater treatment plants in Beijing urban areas. Sci China Chem 54(3):552–558. https://doi.org/10.1007/s11426-010-4093-x

    Article  CAS  Google Scholar 

  • Peng XZ, Wang ZD, Kuang WX, Tan JH, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371(1–3):314–322. https://doi.org/10.1016/j.scitotenv.2006.07.001

    Article  CAS  Google Scholar 

  • Punyapalakul P, Suksomboon K, Prarat P, Khaodhiar S (2012) Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas. Sep Sci Technol 48(5):775–788

    Article  CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barcelo D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841. https://doi.org/10.1016/j.watres.2008.11.043

    Article  CAS  Google Scholar 

  • Rahman MF, Peldszus S, Anderson WB (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–340. https://doi.org/10.1016/j.watres.2013.10.045

    Article  CAS  Google Scholar 

  • Ratola N, Cincinelli A, Alves A, Katsoyiannis A (2012) Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J Hazard Mater 239-240:1–18. https://doi.org/10.1016/j.jhazmat.2012.05.040

    Article  CAS  Google Scholar 

  • Rattanaoudom R, Visvanathan C (2012) Removal of PFOA by hybrid membrane filtration using PAC and hydrotalcite. Desalin Water Treat 32:262–270

    Article  CAS  Google Scholar 

  • Rattanaoudom R, Visvanathan C, Boontanon SK (2012) Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite. J Water Sustainability 2(4):245–248

    CAS  Google Scholar 

  • Rodriguez I, Quintana JB, Carpinteiro J, Carro AM, Lorenzo RA, Cela R (2003) Determination of acidic drugs in sewage water by gas chromatography-mass spectrometry as tert.-butyldimethylsilyl derivatives. J Chromatogr A 985(1–2):265–274. https://doi.org/10.1016/S0021-9673(02)01528-5

    Article  CAS  Google Scholar 

  • Rosal R, Rodriguez A, Perdigon-Melon JA, Petre A, Garcia-Calvo E, Gomez MJ, Aguera A, Fernandez-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588. https://doi.org/10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144(3):383–395

    Article  CAS  Google Scholar 

  • Schultz MM, Barofsky DF, Field JA (2006) Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry – Characterization of municipal wastewaters. Environ Sci Technol 40(1):289–295. https://doi.org/10.1021/es051381p

    Article  CAS  Google Scholar 

  • Stamatis NK, Konstantinou IK (2013) Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. J Environ Sci Health B 48(9):800–813. https://doi.org/10.1080/03601234.2013.781359

    Article  CAS  Google Scholar 

  • Stuerlauridsen F, Birkved M, Hansen LP, Lutzhoft HCH, Hallingsorensen B (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40(7):783–793

    Article  CAS  Google Scholar 

  • Stumpf M, Ternes TA, Wilken R, Rodrigues S, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro Brazil. Sci Total Environ 225(1):135–141

    Article  Google Scholar 

  • Suarez S, Lema JM, Omil F (2010) Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44(10):3214–3224

    Article  CAS  Google Scholar 

  • Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39(9):1761–1772. https://doi.org/10.1016/j.watres.2005.03.003

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, Mcdowell D, Sacher F, Brauch H, Haistgulde B, Preuss G, Wilme U, Zuleiseibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863

    Article  CAS  Google Scholar 

  • Thomas PM, Foster GD (2005) Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ Toxicol Chem 24(1):25–30. https://doi.org/10.1897/04-144r.1

    Article  CAS  Google Scholar 

  • Thompson J, Eaglesham G, Reungoat J, Poussade Y, Bartkow M, Lawrence M, Mueller JF (2011) Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia. Chemosphere 82(1):9–17. https://doi.org/10.1016/j.chemosphere.2010.10.040

    Article  CAS  Google Scholar 

  • Tootchi L, Seth R, Tabe S, Yang P (2013) Transformation products of pharmaceutically active compounds during drinking water ozonation. Water Sci Technol Water Supply 13(6):1576–1582

    Article  CAS  Google Scholar 

  • Valipour M (2014) Future of agricultural water management in Africa. Arch Agron Soil Sci 61(7):907–927

    Article  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  Google Scholar 

  • Wan Z, Wang J (2016) Ce-Fe-reduced graphene oxide nanocomposite as an efficient catalyst for sulfamethazine degradation in aqueous solution. Environ Sci Pollut R 23(18):18542–18551

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640. https://doi.org/10.1016/j.jenvman.2016.07.049

    Article  CAS  Google Scholar 

  • Wang F, Liu C, Shih K (2012) Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere 89(8):1009–1014. https://doi.org/10.1016/j.chemosphere.2012.06.071

    Article  CAS  Google Scholar 

  • Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41(18):4164–4176. https://doi.org/10.1016/j.watres.2007.04.005

    Article  CAS  Google Scholar 

  • Wols BA, Harmsen DJH, Beerendonk EF, Hofmancaris CHM (2015) Predicting pharmaceutical degradation by UV (MP)/H2O2 processes: a kinetic model. Chem Eng J 263:336–345

    Article  CAS  Google Scholar 

  • Wu X, Conkle JL, Ernst F, Gan J (2014) Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ Sci Technol 48(19):11286–11293. https://doi.org/10.1021/es502868k

    Article  CAS  Google Scholar 

  • Xue J, Zhang J, Xu B, Xie J, Wu W, Lu Y (2016) Endotoxins: the critical risk factor in reclaimed water via inhalation exposure. Environ Sci Technol 50(21):11957–11964. https://doi.org/10.1021/acs.est.6b02395

    Article  CAS  Google Scholar 

  • Yamamoto T, Noma Y, Sakai S, Shibata Y (2007) Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ Sci Technol 41(16):5660–5665

    Article  CAS  Google Scholar 

  • Yan T, Chen H, Wang X, Jiang F (2013) Adsorption of perfluorooctane sulfonate (PFOS) on mesoporous carbon nitride. RSC Adv 3(44):22480. https://doi.org/10.1039/c3ra43312a

    Article  CAS  Google Scholar 

  • Yu Q, Deng SB, Yu G (2008) Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res 42(12):3089–3097. https://doi.org/10.1016/j.watres.2008.02.024

    Article  CAS  Google Scholar 

  • Yu J, Hu JY, Tanaka S, Fujii S (2009a) Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res 43(9):2399–2408. https://doi.org/10.1016/j.watres.2009.03.009

    Article  CAS  Google Scholar 

  • Yu Q, Zhang R, Deng S, Huang J, Yu G (2009b) Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res 43(4):1150–1158. https://doi.org/10.1016/j.watres.2008.12.001

    Article  CAS  Google Scholar 

  • Zhang Q, Deng S, Yu G, Huang J (2011) Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresour Technol 102(3):2265–2271. https://doi.org/10.1016/j.biortech.2010.10.040

    Article  CAS  Google Scholar 

  • Zhao C, Zhang J, He G, Wang T, Hou D, Luan Z (2013) Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions. Chem Eng J 233:224–232

    Article  CAS  Google Scholar 

  • Zhao C, Tang CY, Li P, Adrian P, Hu G (2016) Perfluorooctane sulfonate removal by nanofiltration membrane-the effect and interaction of magnesium ion/humic acid. J Membr Sci 503:31–41. https://doi.org/10.1016/j.memsci.2015.12.049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Pan, SY., Wang, Z., Zhang, X. (2019). Occurrence and Health Impacts of Emerging Contaminants in Municipal Wastewater Reuse. In: Singh, R., Kolok, A., Bartelt-Hunt, S. (eds) Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-3179-4_1

Download citation

Publish with us

Policies and ethics