Skip to main content

Brouwer’s Fixed-Point Theorem

  • Chapter
  • First Online:
Elementary Fixed Point Theorems

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

It is more than a century since Brouwer [4] proved a fixed- point theorem of great consequence, in the setting of finite-dimensional Euclidean spaces. It was subsequently extended to normed linear spaces by Schauder [25], and later to locally convex linear topological spaces by Tychonoff [31]. Brouwer’s theorem was generalized to multifunctions first by Kakutani [12], and later to locally convex linear topological spaces by Glicksberg [8] and Ky Fan [6]. Brouwer’s theorem admits of several proofs. Notable among them are those based on Sperner’s lemma [28] or concepts of homotopy/homology from algebraic topology (see Dugundji [5] or Munkres [17]) or concepts and results from real analysis (see Milnor [16], Seki [26], Rogers [23], Kannai [13], Traynor [30]). However, we provide here only the analytic proof of Brouwer’s theorem and a proof based on Sperner’s lemma. Needless to state that Brouwer’s theorem and its generalizations/variants find a wide range of applications in the solution of nonlinear equations, differential and integral equations, mathematical biology and mathematical economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostol, T.A.: Mathematical Analysis, 2nd edn. Narosa Publishing House, New Delhi (1985)

    Google Scholar 

  2. Arnold, B.H.: A topological proof of the fundamental theorem of algebra. Am. Math. Mon. 56, 465–466 (1949)

    Article  MathSciNet  Google Scholar 

  3. Arnold, B.H., Nivan, I.: A correction. Am. Math. Montly 58(104) (1951)

    Google Scholar 

  4. Brouwer, L.E.J.: Uber abbildung von mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Article  Google Scholar 

  5. Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1966)

    MATH  Google Scholar 

  6. Fan, Ky.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. N.A.S. 38, 121–126 (1952)

    Article  MathSciNet  Google Scholar 

  7. Fort, M.K.: Some properties of continuous functions. Am. Math. Mon. 59, 372–375 (1952)

    Article  MathSciNet  Google Scholar 

  8. Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)

    MathSciNet  MATH  Google Scholar 

  9. Hamilton, O.H.: Fixed points for certain non continuous transformations. Proc. Am. Math. Soc. 8, 750–756 (1957)

    Article  Google Scholar 

  10. Holt, C.A., Roth, A.E.: The Nash equilibrium: a perspective. Proc. Natl. Acad. Sci. (USA) 101, 3999–4002 (2004)

    Article  MathSciNet  Google Scholar 

  11. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  12. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)

    Article  MathSciNet  Google Scholar 

  13. Kannai, Y.: An elementary proof of the no-retraction theorem. Am. Math. Mon. 88, 264–268 (1981)

    Article  MathSciNet  Google Scholar 

  14. Knaster, B., Kuratowski, K., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes fur $n$-dimensionale simplexe. Fundam. Math. 14, 132–137 (1929)

    Article  Google Scholar 

  15. Krasa, S., Yannelis, N.C.: An elementary proof of the Knaster-Kuratowski-Mazurkiewicz-Shapely theorem. Econ. Theory 4, 467–471 (1994)

    Article  Google Scholar 

  16. Milnor, J.: Analytic proofs of the “Hairy Ball thoerem” and the Brouwer fixed point theorem. Am. Math. Mon. 85, 521–524 (1978)

    MATH  Google Scholar 

  17. Munkres, J.R.: Topology : A First Course. Prentice-Hall Inc., Englewood Cliffs (1975)

    MATH  Google Scholar 

  18. Nash, J.: Equilibrium points in $N$-person games. Ann. Math. 36, 48–49 (1950)

    Google Scholar 

  19. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  20. Nash, J.: Generalized Brouwer theorem. Bull. Am. Math. Soc. 62, 76 (1956)

    Article  Google Scholar 

  21. Niven, I.: Extension of a topological proof of the fundamental theorem of algebra. Am. Math. Mon. 57, 246–248 (1950)

    MathSciNet  MATH  Google Scholar 

  22. Peleg, B.: Equilibrium points for open acyclic relations. Can. J. Math. 19, 366–369 (1967)

    Article  MathSciNet  Google Scholar 

  23. Rogers, C.A.: A less strange version of Milnor’s proof of Brouwer’s fixed point theorem. Am. Math. Mon. 87, 525–527 (1980)

    Article  MathSciNet  Google Scholar 

  24. Scarf, H.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math. 15, 1328–1343 (1967)

    Article  MathSciNet  Google Scholar 

  25. Schauder, J.: Der Fixpunktsatz in funktional raumen. Stud. Math. 2, 171–180 (1930)

    Article  Google Scholar 

  26. Seki, T.: An elementary proof of Brouwer’s fixed point theorem. Tohoku Math. J. 9, 105–109 (1957)

    Article  MathSciNet  Google Scholar 

  27. Sonnenschein, H.F.: Demand theory without transitive preferences, with applications to the theory of competitive equilibrium. In: Chapman, J.S., Hurwicz, L., Richter, M.K., Sonnenschein, H.F. (eds.) Preferences Utility and Demand: A Minnesota Symposium, pp. 215–233. Harcourt, Brace, Jovanovich, New York (1971)

    Google Scholar 

  28. Sperner, E.: Neuer Beweis fur die invarianz der Dimensionszahl und des gebietes. Abh. Math. Semin. Univ. Hambg. 6, 265–272 (1928)

    Article  MathSciNet  Google Scholar 

  29. Stallings, J.: Fixed point theorems for connectivity maps. Fundam. Math. 48, 249–263 (1959)

    Article  MathSciNet  Google Scholar 

  30. Traynor, T.: An easy analytic proof of Brouwer’s fixed point theorem. Atti Semin. Math. Fis. Univ. Modena XLIV, 479–483 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Tychonoff, A.: Ein Fixpunktsatz. Math. Ann. 111, 767–776 (1935)

    Article  MathSciNet  Google Scholar 

  32. Uzawa, H.: Walras’ existence theorem and Brouwer’s fixed point theorem. Econ. Stud. Q. 3, 59–62 (1962)

    Google Scholar 

  33. Whyburn, G.T.: Analytic Topology. American Mathematical Society, vol. 28. Colloquium Publications, AMS, Providence (1942)

    Google Scholar 

  34. Whyburn, G.T.: Connectivity of peripherally continuous functions. Proc. Natl. Acad. Sci. (USA) 55, 1040–41 (1966)

    Article  MathSciNet  Google Scholar 

  35. Whyburn, G.T.: Quasi-closed sets and fixed points. Proc. Natl. Acad. Sci. (USA) 57, 201–205 (1967)

    Article  MathSciNet  Google Scholar 

  36. Whyburn, G.T.: Loosely closed sets and partially continuous functions. Mich. Math. J. 14, 193–205 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Subrahmanyam .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subrahmanyam, P.V. (2018). Brouwer’s Fixed-Point Theorem. In: Elementary Fixed Point Theorems. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-3158-9_10

Download citation

Publish with us

Policies and ethics